Step |
Hyp |
Ref |
Expression |
1 |
|
xadd4d.1 |
|- ( ph -> ( A e. RR* /\ A =/= -oo ) ) |
2 |
|
xadd4d.2 |
|- ( ph -> ( B e. RR* /\ B =/= -oo ) ) |
3 |
|
xadd4d.3 |
|- ( ph -> ( C e. RR* /\ C =/= -oo ) ) |
4 |
|
xadd4d.4 |
|- ( ph -> ( D e. RR* /\ D =/= -oo ) ) |
5 |
|
xaddass |
|- ( ( ( C e. RR* /\ C =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( D e. RR* /\ D =/= -oo ) ) -> ( ( C +e B ) +e D ) = ( C +e ( B +e D ) ) ) |
6 |
3 2 4 5
|
syl3anc |
|- ( ph -> ( ( C +e B ) +e D ) = ( C +e ( B +e D ) ) ) |
7 |
6
|
oveq2d |
|- ( ph -> ( A +e ( ( C +e B ) +e D ) ) = ( A +e ( C +e ( B +e D ) ) ) ) |
8 |
3
|
simpld |
|- ( ph -> C e. RR* ) |
9 |
4
|
simpld |
|- ( ph -> D e. RR* ) |
10 |
8 9
|
xaddcld |
|- ( ph -> ( C +e D ) e. RR* ) |
11 |
|
xaddnemnf |
|- ( ( ( C e. RR* /\ C =/= -oo ) /\ ( D e. RR* /\ D =/= -oo ) ) -> ( C +e D ) =/= -oo ) |
12 |
3 4 11
|
syl2anc |
|- ( ph -> ( C +e D ) =/= -oo ) |
13 |
|
xaddass |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( ( C +e D ) e. RR* /\ ( C +e D ) =/= -oo ) ) -> ( ( A +e B ) +e ( C +e D ) ) = ( A +e ( B +e ( C +e D ) ) ) ) |
14 |
1 2 10 12 13
|
syl112anc |
|- ( ph -> ( ( A +e B ) +e ( C +e D ) ) = ( A +e ( B +e ( C +e D ) ) ) ) |
15 |
2
|
simpld |
|- ( ph -> B e. RR* ) |
16 |
|
xaddcom |
|- ( ( C e. RR* /\ B e. RR* ) -> ( C +e B ) = ( B +e C ) ) |
17 |
8 15 16
|
syl2anc |
|- ( ph -> ( C +e B ) = ( B +e C ) ) |
18 |
17
|
oveq1d |
|- ( ph -> ( ( C +e B ) +e D ) = ( ( B +e C ) +e D ) ) |
19 |
|
xaddass |
|- ( ( ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) /\ ( D e. RR* /\ D =/= -oo ) ) -> ( ( B +e C ) +e D ) = ( B +e ( C +e D ) ) ) |
20 |
2 3 4 19
|
syl3anc |
|- ( ph -> ( ( B +e C ) +e D ) = ( B +e ( C +e D ) ) ) |
21 |
18 20
|
eqtr2d |
|- ( ph -> ( B +e ( C +e D ) ) = ( ( C +e B ) +e D ) ) |
22 |
21
|
oveq2d |
|- ( ph -> ( A +e ( B +e ( C +e D ) ) ) = ( A +e ( ( C +e B ) +e D ) ) ) |
23 |
14 22
|
eqtrd |
|- ( ph -> ( ( A +e B ) +e ( C +e D ) ) = ( A +e ( ( C +e B ) +e D ) ) ) |
24 |
15 9
|
xaddcld |
|- ( ph -> ( B +e D ) e. RR* ) |
25 |
|
xaddnemnf |
|- ( ( ( B e. RR* /\ B =/= -oo ) /\ ( D e. RR* /\ D =/= -oo ) ) -> ( B +e D ) =/= -oo ) |
26 |
2 4 25
|
syl2anc |
|- ( ph -> ( B +e D ) =/= -oo ) |
27 |
|
xaddass |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) /\ ( ( B +e D ) e. RR* /\ ( B +e D ) =/= -oo ) ) -> ( ( A +e C ) +e ( B +e D ) ) = ( A +e ( C +e ( B +e D ) ) ) ) |
28 |
1 3 24 26 27
|
syl112anc |
|- ( ph -> ( ( A +e C ) +e ( B +e D ) ) = ( A +e ( C +e ( B +e D ) ) ) ) |
29 |
7 23 28
|
3eqtr4d |
|- ( ph -> ( ( A +e B ) +e ( C +e D ) ) = ( ( A +e C ) +e ( B +e D ) ) ) |