Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
|
recn |
|- ( B e. RR -> B e. CC ) |
3 |
|
recn |
|- ( C e. RR -> C e. CC ) |
4 |
|
addass |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) + C ) = ( A + ( B + C ) ) ) |
5 |
1 2 3 4
|
syl3an |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) + C ) = ( A + ( B + C ) ) ) |
6 |
5
|
3expa |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A + B ) + C ) = ( A + ( B + C ) ) ) |
7 |
|
readdcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
8 |
|
rexadd |
|- ( ( ( A + B ) e. RR /\ C e. RR ) -> ( ( A + B ) +e C ) = ( ( A + B ) + C ) ) |
9 |
7 8
|
sylan |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A + B ) +e C ) = ( ( A + B ) + C ) ) |
10 |
|
readdcl |
|- ( ( B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) |
11 |
|
rexadd |
|- ( ( A e. RR /\ ( B + C ) e. RR ) -> ( A +e ( B + C ) ) = ( A + ( B + C ) ) ) |
12 |
10 11
|
sylan2 |
|- ( ( A e. RR /\ ( B e. RR /\ C e. RR ) ) -> ( A +e ( B + C ) ) = ( A + ( B + C ) ) ) |
13 |
12
|
anassrs |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A +e ( B + C ) ) = ( A + ( B + C ) ) ) |
14 |
6 9 13
|
3eqtr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A + B ) +e C ) = ( A +e ( B + C ) ) ) |
15 |
|
rexadd |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) |
16 |
15
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A +e B ) = ( A + B ) ) |
17 |
16
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A +e B ) +e C ) = ( ( A + B ) +e C ) ) |
18 |
|
rexadd |
|- ( ( B e. RR /\ C e. RR ) -> ( B +e C ) = ( B + C ) ) |
19 |
18
|
adantll |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( B +e C ) = ( B + C ) ) |
20 |
19
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A +e ( B +e C ) ) = ( A +e ( B + C ) ) ) |
21 |
14 17 20
|
3eqtr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) |
22 |
21
|
adantll |
|- ( ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ ( A e. RR /\ B e. RR ) ) /\ C e. RR ) -> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) |
23 |
|
oveq2 |
|- ( C = +oo -> ( ( A +e B ) +e C ) = ( ( A +e B ) +e +oo ) ) |
24 |
|
simp1l |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) -> A e. RR* ) |
25 |
|
simp2l |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) -> B e. RR* ) |
26 |
|
xaddcl |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) e. RR* ) |
27 |
24 25 26
|
syl2anc |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) -> ( A +e B ) e. RR* ) |
28 |
|
xaddnemnf |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) ) -> ( A +e B ) =/= -oo ) |
29 |
28
|
3adant3 |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) -> ( A +e B ) =/= -oo ) |
30 |
|
xaddpnf1 |
|- ( ( ( A +e B ) e. RR* /\ ( A +e B ) =/= -oo ) -> ( ( A +e B ) +e +oo ) = +oo ) |
31 |
27 29 30
|
syl2anc |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) -> ( ( A +e B ) +e +oo ) = +oo ) |
32 |
23 31
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ C = +oo ) -> ( ( A +e B ) +e C ) = +oo ) |
33 |
|
xaddpnf1 |
|- ( ( A e. RR* /\ A =/= -oo ) -> ( A +e +oo ) = +oo ) |
34 |
33
|
3ad2ant1 |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) -> ( A +e +oo ) = +oo ) |
35 |
34
|
adantr |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ C = +oo ) -> ( A +e +oo ) = +oo ) |
36 |
32 35
|
eqtr4d |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ C = +oo ) -> ( ( A +e B ) +e C ) = ( A +e +oo ) ) |
37 |
|
oveq2 |
|- ( C = +oo -> ( B +e C ) = ( B +e +oo ) ) |
38 |
|
xaddpnf1 |
|- ( ( B e. RR* /\ B =/= -oo ) -> ( B +e +oo ) = +oo ) |
39 |
38
|
3ad2ant2 |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) -> ( B +e +oo ) = +oo ) |
40 |
37 39
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ C = +oo ) -> ( B +e C ) = +oo ) |
41 |
40
|
oveq2d |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ C = +oo ) -> ( A +e ( B +e C ) ) = ( A +e +oo ) ) |
42 |
36 41
|
eqtr4d |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ C = +oo ) -> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) |
43 |
42
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ ( A e. RR /\ B e. RR ) ) /\ C = +oo ) -> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) |
44 |
|
simp3 |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) -> ( C e. RR* /\ C =/= -oo ) ) |
45 |
|
xrnemnf |
|- ( ( C e. RR* /\ C =/= -oo ) <-> ( C e. RR \/ C = +oo ) ) |
46 |
44 45
|
sylib |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) -> ( C e. RR \/ C = +oo ) ) |
47 |
46
|
adantr |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( C e. RR \/ C = +oo ) ) |
48 |
22 43 47
|
mpjaodan |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) |
49 |
48
|
anassrs |
|- ( ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A e. RR ) /\ B e. RR ) -> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) |
50 |
|
xaddpnf2 |
|- ( ( C e. RR* /\ C =/= -oo ) -> ( +oo +e C ) = +oo ) |
51 |
50
|
3ad2ant3 |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) -> ( +oo +e C ) = +oo ) |
52 |
51 34
|
eqtr4d |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) -> ( +oo +e C ) = ( A +e +oo ) ) |
53 |
52
|
adantr |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ B = +oo ) -> ( +oo +e C ) = ( A +e +oo ) ) |
54 |
|
oveq2 |
|- ( B = +oo -> ( A +e B ) = ( A +e +oo ) ) |
55 |
54 34
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ B = +oo ) -> ( A +e B ) = +oo ) |
56 |
55
|
oveq1d |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ B = +oo ) -> ( ( A +e B ) +e C ) = ( +oo +e C ) ) |
57 |
|
oveq1 |
|- ( B = +oo -> ( B +e C ) = ( +oo +e C ) ) |
58 |
57 51
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ B = +oo ) -> ( B +e C ) = +oo ) |
59 |
58
|
oveq2d |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ B = +oo ) -> ( A +e ( B +e C ) ) = ( A +e +oo ) ) |
60 |
53 56 59
|
3eqtr4d |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ B = +oo ) -> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) |
61 |
60
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A e. RR ) /\ B = +oo ) -> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) |
62 |
|
simpl2 |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A e. RR ) -> ( B e. RR* /\ B =/= -oo ) ) |
63 |
|
xrnemnf |
|- ( ( B e. RR* /\ B =/= -oo ) <-> ( B e. RR \/ B = +oo ) ) |
64 |
62 63
|
sylib |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A e. RR ) -> ( B e. RR \/ B = +oo ) ) |
65 |
49 61 64
|
mpjaodan |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A e. RR ) -> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) |
66 |
|
simpl3 |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A = +oo ) -> ( C e. RR* /\ C =/= -oo ) ) |
67 |
66 50
|
syl |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A = +oo ) -> ( +oo +e C ) = +oo ) |
68 |
|
simpl2l |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A = +oo ) -> B e. RR* ) |
69 |
|
simpl3l |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A = +oo ) -> C e. RR* ) |
70 |
|
xaddcl |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B +e C ) e. RR* ) |
71 |
68 69 70
|
syl2anc |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A = +oo ) -> ( B +e C ) e. RR* ) |
72 |
|
simpl2 |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A = +oo ) -> ( B e. RR* /\ B =/= -oo ) ) |
73 |
|
xaddnemnf |
|- ( ( ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) -> ( B +e C ) =/= -oo ) |
74 |
72 66 73
|
syl2anc |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A = +oo ) -> ( B +e C ) =/= -oo ) |
75 |
|
xaddpnf2 |
|- ( ( ( B +e C ) e. RR* /\ ( B +e C ) =/= -oo ) -> ( +oo +e ( B +e C ) ) = +oo ) |
76 |
71 74 75
|
syl2anc |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A = +oo ) -> ( +oo +e ( B +e C ) ) = +oo ) |
77 |
67 76
|
eqtr4d |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A = +oo ) -> ( +oo +e C ) = ( +oo +e ( B +e C ) ) ) |
78 |
|
simpr |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A = +oo ) -> A = +oo ) |
79 |
78
|
oveq1d |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A = +oo ) -> ( A +e B ) = ( +oo +e B ) ) |
80 |
|
xaddpnf2 |
|- ( ( B e. RR* /\ B =/= -oo ) -> ( +oo +e B ) = +oo ) |
81 |
72 80
|
syl |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A = +oo ) -> ( +oo +e B ) = +oo ) |
82 |
79 81
|
eqtrd |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A = +oo ) -> ( A +e B ) = +oo ) |
83 |
82
|
oveq1d |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A = +oo ) -> ( ( A +e B ) +e C ) = ( +oo +e C ) ) |
84 |
78
|
oveq1d |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A = +oo ) -> ( A +e ( B +e C ) ) = ( +oo +e ( B +e C ) ) ) |
85 |
77 83 84
|
3eqtr4d |
|- ( ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) /\ A = +oo ) -> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) |
86 |
|
simp1 |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) -> ( A e. RR* /\ A =/= -oo ) ) |
87 |
|
xrnemnf |
|- ( ( A e. RR* /\ A =/= -oo ) <-> ( A e. RR \/ A = +oo ) ) |
88 |
86 87
|
sylib |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) -> ( A e. RR \/ A = +oo ) ) |
89 |
65 85 88
|
mpjaodan |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) -> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) |