| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simp1l | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> A e. RR* )  | 
						
						
							| 2 | 
							
								
							 | 
							xnegcl | 
							 |-  ( A e. RR* -> -e A e. RR* )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e A e. RR* )  | 
						
						
							| 4 | 
							
								
							 | 
							simp1r | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> A =/= +oo )  | 
						
						
							| 5 | 
							
								
							 | 
							pnfxr | 
							 |-  +oo e. RR*  | 
						
						
							| 6 | 
							
								
							 | 
							xneg11 | 
							 |-  ( ( A e. RR* /\ +oo e. RR* ) -> ( -e A = -e +oo <-> A = +oo ) )  | 
						
						
							| 7 | 
							
								1 5 6
							 | 
							sylancl | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e A = -e +oo <-> A = +oo ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							necon3bid | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e A =/= -e +oo <-> A =/= +oo ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							mpbird | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e A =/= -e +oo )  | 
						
						
							| 10 | 
							
								
							 | 
							xnegpnf | 
							 |-  -e +oo = -oo  | 
						
						
							| 11 | 
							
								10
							 | 
							a1i | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e +oo = -oo )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							neeqtrd | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e A =/= -oo )  | 
						
						
							| 13 | 
							
								
							 | 
							simp2l | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> B e. RR* )  | 
						
						
							| 14 | 
							
								
							 | 
							xnegcl | 
							 |-  ( B e. RR* -> -e B e. RR* )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							syl | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e B e. RR* )  | 
						
						
							| 16 | 
							
								
							 | 
							simp2r | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> B =/= +oo )  | 
						
						
							| 17 | 
							
								
							 | 
							xneg11 | 
							 |-  ( ( B e. RR* /\ +oo e. RR* ) -> ( -e B = -e +oo <-> B = +oo ) )  | 
						
						
							| 18 | 
							
								13 5 17
							 | 
							sylancl | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e B = -e +oo <-> B = +oo ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							necon3bid | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e B =/= -e +oo <-> B =/= +oo ) )  | 
						
						
							| 20 | 
							
								16 19
							 | 
							mpbird | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e B =/= -e +oo )  | 
						
						
							| 21 | 
							
								20 11
							 | 
							neeqtrd | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e B =/= -oo )  | 
						
						
							| 22 | 
							
								
							 | 
							simp3l | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> C e. RR* )  | 
						
						
							| 23 | 
							
								
							 | 
							xnegcl | 
							 |-  ( C e. RR* -> -e C e. RR* )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							syl | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e C e. RR* )  | 
						
						
							| 25 | 
							
								
							 | 
							simp3r | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> C =/= +oo )  | 
						
						
							| 26 | 
							
								
							 | 
							xneg11 | 
							 |-  ( ( C e. RR* /\ +oo e. RR* ) -> ( -e C = -e +oo <-> C = +oo ) )  | 
						
						
							| 27 | 
							
								22 5 26
							 | 
							sylancl | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e C = -e +oo <-> C = +oo ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							necon3bid | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e C =/= -e +oo <-> C =/= +oo ) )  | 
						
						
							| 29 | 
							
								25 28
							 | 
							mpbird | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e C =/= -e +oo )  | 
						
						
							| 30 | 
							
								29 11
							 | 
							neeqtrd | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e C =/= -oo )  | 
						
						
							| 31 | 
							
								
							 | 
							xaddass | 
							 |-  ( ( ( -e A e. RR* /\ -e A =/= -oo ) /\ ( -e B e. RR* /\ -e B =/= -oo ) /\ ( -e C e. RR* /\ -e C =/= -oo ) ) -> ( ( -e A +e -e B ) +e -e C ) = ( -e A +e ( -e B +e -e C ) ) )  | 
						
						
							| 32 | 
							
								3 12 15 21 24 30 31
							 | 
							syl222anc | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( ( -e A +e -e B ) +e -e C ) = ( -e A +e ( -e B +e -e C ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							xnegdi | 
							 |-  ( ( A e. RR* /\ B e. RR* ) -> -e ( A +e B ) = ( -e A +e -e B ) )  | 
						
						
							| 34 | 
							
								1 13 33
							 | 
							syl2anc | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e ( A +e B ) = ( -e A +e -e B ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							oveq1d | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e ( A +e B ) +e -e C ) = ( ( -e A +e -e B ) +e -e C ) )  | 
						
						
							| 36 | 
							
								
							 | 
							xnegdi | 
							 |-  ( ( B e. RR* /\ C e. RR* ) -> -e ( B +e C ) = ( -e B +e -e C ) )  | 
						
						
							| 37 | 
							
								13 22 36
							 | 
							syl2anc | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e ( B +e C ) = ( -e B +e -e C ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							oveq2d | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e A +e -e ( B +e C ) ) = ( -e A +e ( -e B +e -e C ) ) )  | 
						
						
							| 39 | 
							
								32 35 38
							 | 
							3eqtr4d | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e ( A +e B ) +e -e C ) = ( -e A +e -e ( B +e C ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							xaddcl | 
							 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) e. RR* )  | 
						
						
							| 41 | 
							
								1 13 40
							 | 
							syl2anc | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( A +e B ) e. RR* )  | 
						
						
							| 42 | 
							
								
							 | 
							xnegdi | 
							 |-  ( ( ( A +e B ) e. RR* /\ C e. RR* ) -> -e ( ( A +e B ) +e C ) = ( -e ( A +e B ) +e -e C ) )  | 
						
						
							| 43 | 
							
								41 22 42
							 | 
							syl2anc | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e ( ( A +e B ) +e C ) = ( -e ( A +e B ) +e -e C ) )  | 
						
						
							| 44 | 
							
								
							 | 
							xaddcl | 
							 |-  ( ( B e. RR* /\ C e. RR* ) -> ( B +e C ) e. RR* )  | 
						
						
							| 45 | 
							
								13 22 44
							 | 
							syl2anc | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( B +e C ) e. RR* )  | 
						
						
							| 46 | 
							
								
							 | 
							xnegdi | 
							 |-  ( ( A e. RR* /\ ( B +e C ) e. RR* ) -> -e ( A +e ( B +e C ) ) = ( -e A +e -e ( B +e C ) ) )  | 
						
						
							| 47 | 
							
								1 45 46
							 | 
							syl2anc | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e ( A +e ( B +e C ) ) = ( -e A +e -e ( B +e C ) ) )  | 
						
						
							| 48 | 
							
								39 43 47
							 | 
							3eqtr4d | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e ( ( A +e B ) +e C ) = -e ( A +e ( B +e C ) ) )  | 
						
						
							| 49 | 
							
								
							 | 
							xaddcl | 
							 |-  ( ( ( A +e B ) e. RR* /\ C e. RR* ) -> ( ( A +e B ) +e C ) e. RR* )  | 
						
						
							| 50 | 
							
								41 22 49
							 | 
							syl2anc | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( ( A +e B ) +e C ) e. RR* )  | 
						
						
							| 51 | 
							
								
							 | 
							xaddcl | 
							 |-  ( ( A e. RR* /\ ( B +e C ) e. RR* ) -> ( A +e ( B +e C ) ) e. RR* )  | 
						
						
							| 52 | 
							
								1 45 51
							 | 
							syl2anc | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( A +e ( B +e C ) ) e. RR* )  | 
						
						
							| 53 | 
							
								
							 | 
							xneg11 | 
							 |-  ( ( ( ( A +e B ) +e C ) e. RR* /\ ( A +e ( B +e C ) ) e. RR* ) -> ( -e ( ( A +e B ) +e C ) = -e ( A +e ( B +e C ) ) <-> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) )  | 
						
						
							| 54 | 
							
								50 52 53
							 | 
							syl2anc | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e ( ( A +e B ) +e C ) = -e ( A +e ( B +e C ) ) <-> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) )  | 
						
						
							| 55 | 
							
								48 54
							 | 
							mpbid | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) )  |