| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 2 |
|
elxr |
|- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 3 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 4 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 5 |
|
addcom |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |
| 6 |
3 4 5
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) = ( B + A ) ) |
| 7 |
|
rexadd |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) |
| 8 |
|
rexadd |
|- ( ( B e. RR /\ A e. RR ) -> ( B +e A ) = ( B + A ) ) |
| 9 |
8
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B +e A ) = ( B + A ) ) |
| 10 |
6 7 9
|
3eqtr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( B +e A ) ) |
| 11 |
|
oveq2 |
|- ( B = +oo -> ( A +e B ) = ( A +e +oo ) ) |
| 12 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
| 13 |
|
renemnf |
|- ( A e. RR -> A =/= -oo ) |
| 14 |
|
xaddpnf1 |
|- ( ( A e. RR* /\ A =/= -oo ) -> ( A +e +oo ) = +oo ) |
| 15 |
12 13 14
|
syl2anc |
|- ( A e. RR -> ( A +e +oo ) = +oo ) |
| 16 |
11 15
|
sylan9eqr |
|- ( ( A e. RR /\ B = +oo ) -> ( A +e B ) = +oo ) |
| 17 |
|
oveq1 |
|- ( B = +oo -> ( B +e A ) = ( +oo +e A ) ) |
| 18 |
|
xaddpnf2 |
|- ( ( A e. RR* /\ A =/= -oo ) -> ( +oo +e A ) = +oo ) |
| 19 |
12 13 18
|
syl2anc |
|- ( A e. RR -> ( +oo +e A ) = +oo ) |
| 20 |
17 19
|
sylan9eqr |
|- ( ( A e. RR /\ B = +oo ) -> ( B +e A ) = +oo ) |
| 21 |
16 20
|
eqtr4d |
|- ( ( A e. RR /\ B = +oo ) -> ( A +e B ) = ( B +e A ) ) |
| 22 |
|
oveq2 |
|- ( B = -oo -> ( A +e B ) = ( A +e -oo ) ) |
| 23 |
|
renepnf |
|- ( A e. RR -> A =/= +oo ) |
| 24 |
|
xaddmnf1 |
|- ( ( A e. RR* /\ A =/= +oo ) -> ( A +e -oo ) = -oo ) |
| 25 |
12 23 24
|
syl2anc |
|- ( A e. RR -> ( A +e -oo ) = -oo ) |
| 26 |
22 25
|
sylan9eqr |
|- ( ( A e. RR /\ B = -oo ) -> ( A +e B ) = -oo ) |
| 27 |
|
oveq1 |
|- ( B = -oo -> ( B +e A ) = ( -oo +e A ) ) |
| 28 |
|
xaddmnf2 |
|- ( ( A e. RR* /\ A =/= +oo ) -> ( -oo +e A ) = -oo ) |
| 29 |
12 23 28
|
syl2anc |
|- ( A e. RR -> ( -oo +e A ) = -oo ) |
| 30 |
27 29
|
sylan9eqr |
|- ( ( A e. RR /\ B = -oo ) -> ( B +e A ) = -oo ) |
| 31 |
26 30
|
eqtr4d |
|- ( ( A e. RR /\ B = -oo ) -> ( A +e B ) = ( B +e A ) ) |
| 32 |
10 21 31
|
3jaodan |
|- ( ( A e. RR /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( A +e B ) = ( B +e A ) ) |
| 33 |
2 32
|
sylan2b |
|- ( ( A e. RR /\ B e. RR* ) -> ( A +e B ) = ( B +e A ) ) |
| 34 |
|
pnfaddmnf |
|- ( +oo +e -oo ) = 0 |
| 35 |
|
mnfaddpnf |
|- ( -oo +e +oo ) = 0 |
| 36 |
34 35
|
eqtr4i |
|- ( +oo +e -oo ) = ( -oo +e +oo ) |
| 37 |
|
simpr |
|- ( ( B e. RR* /\ B = -oo ) -> B = -oo ) |
| 38 |
37
|
oveq2d |
|- ( ( B e. RR* /\ B = -oo ) -> ( +oo +e B ) = ( +oo +e -oo ) ) |
| 39 |
37
|
oveq1d |
|- ( ( B e. RR* /\ B = -oo ) -> ( B +e +oo ) = ( -oo +e +oo ) ) |
| 40 |
36 38 39
|
3eqtr4a |
|- ( ( B e. RR* /\ B = -oo ) -> ( +oo +e B ) = ( B +e +oo ) ) |
| 41 |
|
xaddpnf2 |
|- ( ( B e. RR* /\ B =/= -oo ) -> ( +oo +e B ) = +oo ) |
| 42 |
|
xaddpnf1 |
|- ( ( B e. RR* /\ B =/= -oo ) -> ( B +e +oo ) = +oo ) |
| 43 |
41 42
|
eqtr4d |
|- ( ( B e. RR* /\ B =/= -oo ) -> ( +oo +e B ) = ( B +e +oo ) ) |
| 44 |
40 43
|
pm2.61dane |
|- ( B e. RR* -> ( +oo +e B ) = ( B +e +oo ) ) |
| 45 |
44
|
adantl |
|- ( ( A = +oo /\ B e. RR* ) -> ( +oo +e B ) = ( B +e +oo ) ) |
| 46 |
|
simpl |
|- ( ( A = +oo /\ B e. RR* ) -> A = +oo ) |
| 47 |
46
|
oveq1d |
|- ( ( A = +oo /\ B e. RR* ) -> ( A +e B ) = ( +oo +e B ) ) |
| 48 |
46
|
oveq2d |
|- ( ( A = +oo /\ B e. RR* ) -> ( B +e A ) = ( B +e +oo ) ) |
| 49 |
45 47 48
|
3eqtr4d |
|- ( ( A = +oo /\ B e. RR* ) -> ( A +e B ) = ( B +e A ) ) |
| 50 |
35 34
|
eqtr4i |
|- ( -oo +e +oo ) = ( +oo +e -oo ) |
| 51 |
|
simpr |
|- ( ( B e. RR* /\ B = +oo ) -> B = +oo ) |
| 52 |
51
|
oveq2d |
|- ( ( B e. RR* /\ B = +oo ) -> ( -oo +e B ) = ( -oo +e +oo ) ) |
| 53 |
51
|
oveq1d |
|- ( ( B e. RR* /\ B = +oo ) -> ( B +e -oo ) = ( +oo +e -oo ) ) |
| 54 |
50 52 53
|
3eqtr4a |
|- ( ( B e. RR* /\ B = +oo ) -> ( -oo +e B ) = ( B +e -oo ) ) |
| 55 |
|
xaddmnf2 |
|- ( ( B e. RR* /\ B =/= +oo ) -> ( -oo +e B ) = -oo ) |
| 56 |
|
xaddmnf1 |
|- ( ( B e. RR* /\ B =/= +oo ) -> ( B +e -oo ) = -oo ) |
| 57 |
55 56
|
eqtr4d |
|- ( ( B e. RR* /\ B =/= +oo ) -> ( -oo +e B ) = ( B +e -oo ) ) |
| 58 |
54 57
|
pm2.61dane |
|- ( B e. RR* -> ( -oo +e B ) = ( B +e -oo ) ) |
| 59 |
58
|
adantl |
|- ( ( A = -oo /\ B e. RR* ) -> ( -oo +e B ) = ( B +e -oo ) ) |
| 60 |
|
simpl |
|- ( ( A = -oo /\ B e. RR* ) -> A = -oo ) |
| 61 |
60
|
oveq1d |
|- ( ( A = -oo /\ B e. RR* ) -> ( A +e B ) = ( -oo +e B ) ) |
| 62 |
60
|
oveq2d |
|- ( ( A = -oo /\ B e. RR* ) -> ( B +e A ) = ( B +e -oo ) ) |
| 63 |
59 61 62
|
3eqtr4d |
|- ( ( A = -oo /\ B e. RR* ) -> ( A +e B ) = ( B +e A ) ) |
| 64 |
33 49 63
|
3jaoian |
|- ( ( ( A e. RR \/ A = +oo \/ A = -oo ) /\ B e. RR* ) -> ( A +e B ) = ( B +e A ) ) |
| 65 |
1 64
|
sylanb |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) = ( B +e A ) ) |