Step |
Hyp |
Ref |
Expression |
1 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
2 |
|
elxr |
|- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
3 |
|
recn |
|- ( A e. RR -> A e. CC ) |
4 |
|
recn |
|- ( B e. RR -> B e. CC ) |
5 |
|
addcom |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |
6 |
3 4 5
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) = ( B + A ) ) |
7 |
|
rexadd |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) |
8 |
|
rexadd |
|- ( ( B e. RR /\ A e. RR ) -> ( B +e A ) = ( B + A ) ) |
9 |
8
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B +e A ) = ( B + A ) ) |
10 |
6 7 9
|
3eqtr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( B +e A ) ) |
11 |
|
oveq2 |
|- ( B = +oo -> ( A +e B ) = ( A +e +oo ) ) |
12 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
13 |
|
renemnf |
|- ( A e. RR -> A =/= -oo ) |
14 |
|
xaddpnf1 |
|- ( ( A e. RR* /\ A =/= -oo ) -> ( A +e +oo ) = +oo ) |
15 |
12 13 14
|
syl2anc |
|- ( A e. RR -> ( A +e +oo ) = +oo ) |
16 |
11 15
|
sylan9eqr |
|- ( ( A e. RR /\ B = +oo ) -> ( A +e B ) = +oo ) |
17 |
|
oveq1 |
|- ( B = +oo -> ( B +e A ) = ( +oo +e A ) ) |
18 |
|
xaddpnf2 |
|- ( ( A e. RR* /\ A =/= -oo ) -> ( +oo +e A ) = +oo ) |
19 |
12 13 18
|
syl2anc |
|- ( A e. RR -> ( +oo +e A ) = +oo ) |
20 |
17 19
|
sylan9eqr |
|- ( ( A e. RR /\ B = +oo ) -> ( B +e A ) = +oo ) |
21 |
16 20
|
eqtr4d |
|- ( ( A e. RR /\ B = +oo ) -> ( A +e B ) = ( B +e A ) ) |
22 |
|
oveq2 |
|- ( B = -oo -> ( A +e B ) = ( A +e -oo ) ) |
23 |
|
renepnf |
|- ( A e. RR -> A =/= +oo ) |
24 |
|
xaddmnf1 |
|- ( ( A e. RR* /\ A =/= +oo ) -> ( A +e -oo ) = -oo ) |
25 |
12 23 24
|
syl2anc |
|- ( A e. RR -> ( A +e -oo ) = -oo ) |
26 |
22 25
|
sylan9eqr |
|- ( ( A e. RR /\ B = -oo ) -> ( A +e B ) = -oo ) |
27 |
|
oveq1 |
|- ( B = -oo -> ( B +e A ) = ( -oo +e A ) ) |
28 |
|
xaddmnf2 |
|- ( ( A e. RR* /\ A =/= +oo ) -> ( -oo +e A ) = -oo ) |
29 |
12 23 28
|
syl2anc |
|- ( A e. RR -> ( -oo +e A ) = -oo ) |
30 |
27 29
|
sylan9eqr |
|- ( ( A e. RR /\ B = -oo ) -> ( B +e A ) = -oo ) |
31 |
26 30
|
eqtr4d |
|- ( ( A e. RR /\ B = -oo ) -> ( A +e B ) = ( B +e A ) ) |
32 |
10 21 31
|
3jaodan |
|- ( ( A e. RR /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( A +e B ) = ( B +e A ) ) |
33 |
2 32
|
sylan2b |
|- ( ( A e. RR /\ B e. RR* ) -> ( A +e B ) = ( B +e A ) ) |
34 |
|
pnfaddmnf |
|- ( +oo +e -oo ) = 0 |
35 |
|
mnfaddpnf |
|- ( -oo +e +oo ) = 0 |
36 |
34 35
|
eqtr4i |
|- ( +oo +e -oo ) = ( -oo +e +oo ) |
37 |
|
simpr |
|- ( ( B e. RR* /\ B = -oo ) -> B = -oo ) |
38 |
37
|
oveq2d |
|- ( ( B e. RR* /\ B = -oo ) -> ( +oo +e B ) = ( +oo +e -oo ) ) |
39 |
37
|
oveq1d |
|- ( ( B e. RR* /\ B = -oo ) -> ( B +e +oo ) = ( -oo +e +oo ) ) |
40 |
36 38 39
|
3eqtr4a |
|- ( ( B e. RR* /\ B = -oo ) -> ( +oo +e B ) = ( B +e +oo ) ) |
41 |
|
xaddpnf2 |
|- ( ( B e. RR* /\ B =/= -oo ) -> ( +oo +e B ) = +oo ) |
42 |
|
xaddpnf1 |
|- ( ( B e. RR* /\ B =/= -oo ) -> ( B +e +oo ) = +oo ) |
43 |
41 42
|
eqtr4d |
|- ( ( B e. RR* /\ B =/= -oo ) -> ( +oo +e B ) = ( B +e +oo ) ) |
44 |
40 43
|
pm2.61dane |
|- ( B e. RR* -> ( +oo +e B ) = ( B +e +oo ) ) |
45 |
44
|
adantl |
|- ( ( A = +oo /\ B e. RR* ) -> ( +oo +e B ) = ( B +e +oo ) ) |
46 |
|
simpl |
|- ( ( A = +oo /\ B e. RR* ) -> A = +oo ) |
47 |
46
|
oveq1d |
|- ( ( A = +oo /\ B e. RR* ) -> ( A +e B ) = ( +oo +e B ) ) |
48 |
46
|
oveq2d |
|- ( ( A = +oo /\ B e. RR* ) -> ( B +e A ) = ( B +e +oo ) ) |
49 |
45 47 48
|
3eqtr4d |
|- ( ( A = +oo /\ B e. RR* ) -> ( A +e B ) = ( B +e A ) ) |
50 |
35 34
|
eqtr4i |
|- ( -oo +e +oo ) = ( +oo +e -oo ) |
51 |
|
simpr |
|- ( ( B e. RR* /\ B = +oo ) -> B = +oo ) |
52 |
51
|
oveq2d |
|- ( ( B e. RR* /\ B = +oo ) -> ( -oo +e B ) = ( -oo +e +oo ) ) |
53 |
51
|
oveq1d |
|- ( ( B e. RR* /\ B = +oo ) -> ( B +e -oo ) = ( +oo +e -oo ) ) |
54 |
50 52 53
|
3eqtr4a |
|- ( ( B e. RR* /\ B = +oo ) -> ( -oo +e B ) = ( B +e -oo ) ) |
55 |
|
xaddmnf2 |
|- ( ( B e. RR* /\ B =/= +oo ) -> ( -oo +e B ) = -oo ) |
56 |
|
xaddmnf1 |
|- ( ( B e. RR* /\ B =/= +oo ) -> ( B +e -oo ) = -oo ) |
57 |
55 56
|
eqtr4d |
|- ( ( B e. RR* /\ B =/= +oo ) -> ( -oo +e B ) = ( B +e -oo ) ) |
58 |
54 57
|
pm2.61dane |
|- ( B e. RR* -> ( -oo +e B ) = ( B +e -oo ) ) |
59 |
58
|
adantl |
|- ( ( A = -oo /\ B e. RR* ) -> ( -oo +e B ) = ( B +e -oo ) ) |
60 |
|
simpl |
|- ( ( A = -oo /\ B e. RR* ) -> A = -oo ) |
61 |
60
|
oveq1d |
|- ( ( A = -oo /\ B e. RR* ) -> ( A +e B ) = ( -oo +e B ) ) |
62 |
60
|
oveq2d |
|- ( ( A = -oo /\ B e. RR* ) -> ( B +e A ) = ( B +e -oo ) ) |
63 |
59 61 62
|
3eqtr4d |
|- ( ( A = -oo /\ B e. RR* ) -> ( A +e B ) = ( B +e A ) ) |
64 |
33 49 63
|
3jaoian |
|- ( ( ( A e. RR \/ A = +oo \/ A = -oo ) /\ B e. RR* ) -> ( A +e B ) = ( B +e A ) ) |
65 |
1 64
|
sylanb |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) = ( B +e A ) ) |