Description: The extended real addition operation is commutative. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xaddcomd.1 | |- ( ph -> A e. RR* ) |
|
| xaddcomd.2 | |- ( ph -> B e. RR* ) |
||
| Assertion | xaddcomd | |- ( ph -> ( A +e B ) = ( B +e A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xaddcomd.1 | |- ( ph -> A e. RR* ) |
|
| 2 | xaddcomd.2 | |- ( ph -> B e. RR* ) |
|
| 3 | xaddcom | |- ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) = ( B +e A ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( A +e B ) = ( B +e A ) ) |