Metamath Proof Explorer


Theorem xaddcomd

Description: The extended real addition operation is commutative. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xaddcomd.1
|- ( ph -> A e. RR* )
xaddcomd.2
|- ( ph -> B e. RR* )
Assertion xaddcomd
|- ( ph -> ( A +e B ) = ( B +e A ) )

Proof

Step Hyp Ref Expression
1 xaddcomd.1
 |-  ( ph -> A e. RR* )
2 xaddcomd.2
 |-  ( ph -> B e. RR* )
3 xaddcom
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) = ( B +e A ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( A +e B ) = ( B +e A ) )