| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xadddilem |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 2 |
|
simpl2 |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> B e. RR* ) |
| 3 |
|
simpl3 |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> C e. RR* ) |
| 4 |
|
xaddcl |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B +e C ) e. RR* ) |
| 5 |
2 3 4
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( B +e C ) e. RR* ) |
| 6 |
|
xmul02 |
|- ( ( B +e C ) e. RR* -> ( 0 *e ( B +e C ) ) = 0 ) |
| 7 |
5 6
|
syl |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e ( B +e C ) ) = 0 ) |
| 8 |
|
0xr |
|- 0 e. RR* |
| 9 |
|
xaddrid |
|- ( 0 e. RR* -> ( 0 +e 0 ) = 0 ) |
| 10 |
8 9
|
ax-mp |
|- ( 0 +e 0 ) = 0 |
| 11 |
7 10
|
eqtr4di |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e ( B +e C ) ) = ( 0 +e 0 ) ) |
| 12 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> 0 = A ) |
| 13 |
12
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e ( B +e C ) ) = ( A *e ( B +e C ) ) ) |
| 14 |
|
xmul02 |
|- ( B e. RR* -> ( 0 *e B ) = 0 ) |
| 15 |
2 14
|
syl |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e B ) = 0 ) |
| 16 |
12
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e B ) = ( A *e B ) ) |
| 17 |
15 16
|
eqtr3d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> 0 = ( A *e B ) ) |
| 18 |
|
xmul02 |
|- ( C e. RR* -> ( 0 *e C ) = 0 ) |
| 19 |
3 18
|
syl |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e C ) = 0 ) |
| 20 |
12
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e C ) = ( A *e C ) ) |
| 21 |
19 20
|
eqtr3d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> 0 = ( A *e C ) ) |
| 22 |
17 21
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 +e 0 ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 23 |
11 13 22
|
3eqtr3d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 24 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> A e. RR ) |
| 25 |
24
|
adantr |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> A e. RR ) |
| 26 |
|
rexneg |
|- ( A e. RR -> -e A = -u A ) |
| 27 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
| 28 |
26 27
|
eqeltrd |
|- ( A e. RR -> -e A e. RR ) |
| 29 |
25 28
|
syl |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> -e A e. RR ) |
| 30 |
|
simpl2 |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> B e. RR* ) |
| 31 |
|
simpl3 |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> C e. RR* ) |
| 32 |
24
|
rexrd |
|- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> A e. RR* ) |
| 33 |
|
xlt0neg1 |
|- ( A e. RR* -> ( A < 0 <-> 0 < -e A ) ) |
| 34 |
32 33
|
syl |
|- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> ( A < 0 <-> 0 < -e A ) ) |
| 35 |
34
|
biimpa |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> 0 < -e A ) |
| 36 |
|
xadddilem |
|- ( ( ( -e A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < -e A ) -> ( -e A *e ( B +e C ) ) = ( ( -e A *e B ) +e ( -e A *e C ) ) ) |
| 37 |
29 30 31 35 36
|
syl31anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( -e A *e ( B +e C ) ) = ( ( -e A *e B ) +e ( -e A *e C ) ) ) |
| 38 |
32
|
adantr |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> A e. RR* ) |
| 39 |
30 31 4
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( B +e C ) e. RR* ) |
| 40 |
|
xmulneg1 |
|- ( ( A e. RR* /\ ( B +e C ) e. RR* ) -> ( -e A *e ( B +e C ) ) = -e ( A *e ( B +e C ) ) ) |
| 41 |
38 39 40
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( -e A *e ( B +e C ) ) = -e ( A *e ( B +e C ) ) ) |
| 42 |
|
xmulneg1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -e A *e B ) = -e ( A *e B ) ) |
| 43 |
38 30 42
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( -e A *e B ) = -e ( A *e B ) ) |
| 44 |
|
xmulneg1 |
|- ( ( A e. RR* /\ C e. RR* ) -> ( -e A *e C ) = -e ( A *e C ) ) |
| 45 |
38 31 44
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( -e A *e C ) = -e ( A *e C ) ) |
| 46 |
43 45
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( ( -e A *e B ) +e ( -e A *e C ) ) = ( -e ( A *e B ) +e -e ( A *e C ) ) ) |
| 47 |
|
xmulcl |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) e. RR* ) |
| 48 |
38 30 47
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( A *e B ) e. RR* ) |
| 49 |
|
xmulcl |
|- ( ( A e. RR* /\ C e. RR* ) -> ( A *e C ) e. RR* ) |
| 50 |
38 31 49
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( A *e C ) e. RR* ) |
| 51 |
|
xnegdi |
|- ( ( ( A *e B ) e. RR* /\ ( A *e C ) e. RR* ) -> -e ( ( A *e B ) +e ( A *e C ) ) = ( -e ( A *e B ) +e -e ( A *e C ) ) ) |
| 52 |
48 50 51
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> -e ( ( A *e B ) +e ( A *e C ) ) = ( -e ( A *e B ) +e -e ( A *e C ) ) ) |
| 53 |
46 52
|
eqtr4d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( ( -e A *e B ) +e ( -e A *e C ) ) = -e ( ( A *e B ) +e ( A *e C ) ) ) |
| 54 |
37 41 53
|
3eqtr3d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> -e ( A *e ( B +e C ) ) = -e ( ( A *e B ) +e ( A *e C ) ) ) |
| 55 |
|
xmulcl |
|- ( ( A e. RR* /\ ( B +e C ) e. RR* ) -> ( A *e ( B +e C ) ) e. RR* ) |
| 56 |
38 39 55
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( A *e ( B +e C ) ) e. RR* ) |
| 57 |
|
xaddcl |
|- ( ( ( A *e B ) e. RR* /\ ( A *e C ) e. RR* ) -> ( ( A *e B ) +e ( A *e C ) ) e. RR* ) |
| 58 |
48 50 57
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( ( A *e B ) +e ( A *e C ) ) e. RR* ) |
| 59 |
|
xneg11 |
|- ( ( ( A *e ( B +e C ) ) e. RR* /\ ( ( A *e B ) +e ( A *e C ) ) e. RR* ) -> ( -e ( A *e ( B +e C ) ) = -e ( ( A *e B ) +e ( A *e C ) ) <-> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) ) |
| 60 |
56 58 59
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( -e ( A *e ( B +e C ) ) = -e ( ( A *e B ) +e ( A *e C ) ) <-> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) ) |
| 61 |
54 60
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 62 |
|
0re |
|- 0 e. RR |
| 63 |
|
lttri4 |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A \/ 0 = A \/ A < 0 ) ) |
| 64 |
62 24 63
|
sylancr |
|- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> ( 0 < A \/ 0 = A \/ A < 0 ) ) |
| 65 |
1 23 61 64
|
mpjao3dan |
|- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |