Step |
Hyp |
Ref |
Expression |
1 |
|
xadddilem |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
2 |
|
simpl2 |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> B e. RR* ) |
3 |
|
simpl3 |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> C e. RR* ) |
4 |
|
xaddcl |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B +e C ) e. RR* ) |
5 |
2 3 4
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( B +e C ) e. RR* ) |
6 |
|
xmul02 |
|- ( ( B +e C ) e. RR* -> ( 0 *e ( B +e C ) ) = 0 ) |
7 |
5 6
|
syl |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e ( B +e C ) ) = 0 ) |
8 |
|
0xr |
|- 0 e. RR* |
9 |
|
xaddid1 |
|- ( 0 e. RR* -> ( 0 +e 0 ) = 0 ) |
10 |
8 9
|
ax-mp |
|- ( 0 +e 0 ) = 0 |
11 |
7 10
|
eqtr4di |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e ( B +e C ) ) = ( 0 +e 0 ) ) |
12 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> 0 = A ) |
13 |
12
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e ( B +e C ) ) = ( A *e ( B +e C ) ) ) |
14 |
|
xmul02 |
|- ( B e. RR* -> ( 0 *e B ) = 0 ) |
15 |
2 14
|
syl |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e B ) = 0 ) |
16 |
12
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e B ) = ( A *e B ) ) |
17 |
15 16
|
eqtr3d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> 0 = ( A *e B ) ) |
18 |
|
xmul02 |
|- ( C e. RR* -> ( 0 *e C ) = 0 ) |
19 |
3 18
|
syl |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e C ) = 0 ) |
20 |
12
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e C ) = ( A *e C ) ) |
21 |
19 20
|
eqtr3d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> 0 = ( A *e C ) ) |
22 |
17 21
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 +e 0 ) = ( ( A *e B ) +e ( A *e C ) ) ) |
23 |
11 13 22
|
3eqtr3d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
24 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> A e. RR ) |
25 |
24
|
adantr |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> A e. RR ) |
26 |
|
rexneg |
|- ( A e. RR -> -e A = -u A ) |
27 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
28 |
26 27
|
eqeltrd |
|- ( A e. RR -> -e A e. RR ) |
29 |
25 28
|
syl |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> -e A e. RR ) |
30 |
|
simpl2 |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> B e. RR* ) |
31 |
|
simpl3 |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> C e. RR* ) |
32 |
24
|
rexrd |
|- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> A e. RR* ) |
33 |
|
xlt0neg1 |
|- ( A e. RR* -> ( A < 0 <-> 0 < -e A ) ) |
34 |
32 33
|
syl |
|- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> ( A < 0 <-> 0 < -e A ) ) |
35 |
34
|
biimpa |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> 0 < -e A ) |
36 |
|
xadddilem |
|- ( ( ( -e A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < -e A ) -> ( -e A *e ( B +e C ) ) = ( ( -e A *e B ) +e ( -e A *e C ) ) ) |
37 |
29 30 31 35 36
|
syl31anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( -e A *e ( B +e C ) ) = ( ( -e A *e B ) +e ( -e A *e C ) ) ) |
38 |
32
|
adantr |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> A e. RR* ) |
39 |
30 31 4
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( B +e C ) e. RR* ) |
40 |
|
xmulneg1 |
|- ( ( A e. RR* /\ ( B +e C ) e. RR* ) -> ( -e A *e ( B +e C ) ) = -e ( A *e ( B +e C ) ) ) |
41 |
38 39 40
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( -e A *e ( B +e C ) ) = -e ( A *e ( B +e C ) ) ) |
42 |
|
xmulneg1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -e A *e B ) = -e ( A *e B ) ) |
43 |
38 30 42
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( -e A *e B ) = -e ( A *e B ) ) |
44 |
|
xmulneg1 |
|- ( ( A e. RR* /\ C e. RR* ) -> ( -e A *e C ) = -e ( A *e C ) ) |
45 |
38 31 44
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( -e A *e C ) = -e ( A *e C ) ) |
46 |
43 45
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( ( -e A *e B ) +e ( -e A *e C ) ) = ( -e ( A *e B ) +e -e ( A *e C ) ) ) |
47 |
|
xmulcl |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) e. RR* ) |
48 |
38 30 47
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( A *e B ) e. RR* ) |
49 |
|
xmulcl |
|- ( ( A e. RR* /\ C e. RR* ) -> ( A *e C ) e. RR* ) |
50 |
38 31 49
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( A *e C ) e. RR* ) |
51 |
|
xnegdi |
|- ( ( ( A *e B ) e. RR* /\ ( A *e C ) e. RR* ) -> -e ( ( A *e B ) +e ( A *e C ) ) = ( -e ( A *e B ) +e -e ( A *e C ) ) ) |
52 |
48 50 51
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> -e ( ( A *e B ) +e ( A *e C ) ) = ( -e ( A *e B ) +e -e ( A *e C ) ) ) |
53 |
46 52
|
eqtr4d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( ( -e A *e B ) +e ( -e A *e C ) ) = -e ( ( A *e B ) +e ( A *e C ) ) ) |
54 |
37 41 53
|
3eqtr3d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> -e ( A *e ( B +e C ) ) = -e ( ( A *e B ) +e ( A *e C ) ) ) |
55 |
|
xmulcl |
|- ( ( A e. RR* /\ ( B +e C ) e. RR* ) -> ( A *e ( B +e C ) ) e. RR* ) |
56 |
38 39 55
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( A *e ( B +e C ) ) e. RR* ) |
57 |
|
xaddcl |
|- ( ( ( A *e B ) e. RR* /\ ( A *e C ) e. RR* ) -> ( ( A *e B ) +e ( A *e C ) ) e. RR* ) |
58 |
48 50 57
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( ( A *e B ) +e ( A *e C ) ) e. RR* ) |
59 |
|
xneg11 |
|- ( ( ( A *e ( B +e C ) ) e. RR* /\ ( ( A *e B ) +e ( A *e C ) ) e. RR* ) -> ( -e ( A *e ( B +e C ) ) = -e ( ( A *e B ) +e ( A *e C ) ) <-> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) ) |
60 |
56 58 59
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( -e ( A *e ( B +e C ) ) = -e ( ( A *e B ) +e ( A *e C ) ) <-> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) ) |
61 |
54 60
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
62 |
|
0re |
|- 0 e. RR |
63 |
|
lttri4 |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A \/ 0 = A \/ A < 0 ) ) |
64 |
62 24 63
|
sylancr |
|- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> ( 0 < A \/ 0 = A \/ A < 0 ) ) |
65 |
1 23 61 64
|
mpjao3dan |
|- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |