Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A e. RR ) -> A e. RR ) |
2 |
|
simp2l |
|- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> B e. RR* ) |
3 |
2
|
ad2antrr |
|- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A e. RR ) -> B e. RR* ) |
4 |
|
simp3l |
|- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> C e. RR* ) |
5 |
4
|
ad2antrr |
|- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A e. RR ) -> C e. RR* ) |
6 |
|
xadddi |
|- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
7 |
1 3 5 6
|
syl3anc |
|- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A e. RR ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
8 |
|
pnfxr |
|- +oo e. RR* |
9 |
4
|
adantr |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> C e. RR* ) |
10 |
|
xmulcl |
|- ( ( +oo e. RR* /\ C e. RR* ) -> ( +oo *e C ) e. RR* ) |
11 |
8 9 10
|
sylancr |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( +oo *e C ) e. RR* ) |
12 |
|
simpl3r |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> 0 <_ C ) |
13 |
|
0lepnf |
|- 0 <_ +oo |
14 |
|
xmulge0 |
|- ( ( ( +oo e. RR* /\ 0 <_ +oo ) /\ ( C e. RR* /\ 0 <_ C ) ) -> 0 <_ ( +oo *e C ) ) |
15 |
8 13 14
|
mpanl12 |
|- ( ( C e. RR* /\ 0 <_ C ) -> 0 <_ ( +oo *e C ) ) |
16 |
4 12 15
|
syl2an2r |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> 0 <_ ( +oo *e C ) ) |
17 |
|
ge0nemnf |
|- ( ( ( +oo *e C ) e. RR* /\ 0 <_ ( +oo *e C ) ) -> ( +oo *e C ) =/= -oo ) |
18 |
11 16 17
|
syl2anc |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( +oo *e C ) =/= -oo ) |
19 |
18
|
adantr |
|- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A = +oo ) -> ( +oo *e C ) =/= -oo ) |
20 |
|
xaddpnf2 |
|- ( ( ( +oo *e C ) e. RR* /\ ( +oo *e C ) =/= -oo ) -> ( +oo +e ( +oo *e C ) ) = +oo ) |
21 |
11 19 20
|
syl2an2r |
|- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A = +oo ) -> ( +oo +e ( +oo *e C ) ) = +oo ) |
22 |
|
oveq1 |
|- ( A = +oo -> ( A *e B ) = ( +oo *e B ) ) |
23 |
|
oveq1 |
|- ( A = +oo -> ( A *e C ) = ( +oo *e C ) ) |
24 |
22 23
|
oveq12d |
|- ( A = +oo -> ( ( A *e B ) +e ( A *e C ) ) = ( ( +oo *e B ) +e ( +oo *e C ) ) ) |
25 |
|
xmulpnf2 |
|- ( ( B e. RR* /\ 0 < B ) -> ( +oo *e B ) = +oo ) |
26 |
2 25
|
sylan |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( +oo *e B ) = +oo ) |
27 |
26
|
oveq1d |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( ( +oo *e B ) +e ( +oo *e C ) ) = ( +oo +e ( +oo *e C ) ) ) |
28 |
24 27
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A = +oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( +oo +e ( +oo *e C ) ) ) |
29 |
|
oveq1 |
|- ( A = +oo -> ( A *e ( B +e C ) ) = ( +oo *e ( B +e C ) ) ) |
30 |
|
xaddcl |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B +e C ) e. RR* ) |
31 |
2 4 30
|
syl2anc |
|- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> ( B +e C ) e. RR* ) |
32 |
|
0xr |
|- 0 e. RR* |
33 |
32
|
a1i |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> 0 e. RR* ) |
34 |
2
|
adantr |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> B e. RR* ) |
35 |
31
|
adantr |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( B +e C ) e. RR* ) |
36 |
|
simpr |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> 0 < B ) |
37 |
34
|
xaddid1d |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( B +e 0 ) = B ) |
38 |
|
xleadd2a |
|- ( ( ( 0 e. RR* /\ C e. RR* /\ B e. RR* ) /\ 0 <_ C ) -> ( B +e 0 ) <_ ( B +e C ) ) |
39 |
33 9 34 12 38
|
syl31anc |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( B +e 0 ) <_ ( B +e C ) ) |
40 |
37 39
|
eqbrtrrd |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> B <_ ( B +e C ) ) |
41 |
33 34 35 36 40
|
xrltletrd |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> 0 < ( B +e C ) ) |
42 |
|
xmulpnf2 |
|- ( ( ( B +e C ) e. RR* /\ 0 < ( B +e C ) ) -> ( +oo *e ( B +e C ) ) = +oo ) |
43 |
31 41 42
|
syl2an2r |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( +oo *e ( B +e C ) ) = +oo ) |
44 |
29 43
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A = +oo ) -> ( A *e ( B +e C ) ) = +oo ) |
45 |
21 28 44
|
3eqtr4rd |
|- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A = +oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
46 |
|
mnfxr |
|- -oo e. RR* |
47 |
|
xmulcl |
|- ( ( -oo e. RR* /\ C e. RR* ) -> ( -oo *e C ) e. RR* ) |
48 |
46 9 47
|
sylancr |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( -oo *e C ) e. RR* ) |
49 |
|
xmulneg1 |
|- ( ( -oo e. RR* /\ C e. RR* ) -> ( -e -oo *e C ) = -e ( -oo *e C ) ) |
50 |
46 9 49
|
sylancr |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( -e -oo *e C ) = -e ( -oo *e C ) ) |
51 |
|
xnegmnf |
|- -e -oo = +oo |
52 |
51
|
oveq1i |
|- ( -e -oo *e C ) = ( +oo *e C ) |
53 |
50 52
|
eqtr3di |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> -e ( -oo *e C ) = ( +oo *e C ) ) |
54 |
|
xnegpnf |
|- -e +oo = -oo |
55 |
54
|
a1i |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> -e +oo = -oo ) |
56 |
53 55
|
eqeq12d |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( -e ( -oo *e C ) = -e +oo <-> ( +oo *e C ) = -oo ) ) |
57 |
|
xneg11 |
|- ( ( ( -oo *e C ) e. RR* /\ +oo e. RR* ) -> ( -e ( -oo *e C ) = -e +oo <-> ( -oo *e C ) = +oo ) ) |
58 |
48 8 57
|
sylancl |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( -e ( -oo *e C ) = -e +oo <-> ( -oo *e C ) = +oo ) ) |
59 |
56 58
|
bitr3d |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( ( +oo *e C ) = -oo <-> ( -oo *e C ) = +oo ) ) |
60 |
59
|
necon3bid |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( ( +oo *e C ) =/= -oo <-> ( -oo *e C ) =/= +oo ) ) |
61 |
18 60
|
mpbid |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( -oo *e C ) =/= +oo ) |
62 |
|
xaddmnf2 |
|- ( ( ( -oo *e C ) e. RR* /\ ( -oo *e C ) =/= +oo ) -> ( -oo +e ( -oo *e C ) ) = -oo ) |
63 |
48 61 62
|
syl2anc |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( -oo +e ( -oo *e C ) ) = -oo ) |
64 |
63
|
adantr |
|- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A = -oo ) -> ( -oo +e ( -oo *e C ) ) = -oo ) |
65 |
|
oveq1 |
|- ( A = -oo -> ( A *e B ) = ( -oo *e B ) ) |
66 |
|
oveq1 |
|- ( A = -oo -> ( A *e C ) = ( -oo *e C ) ) |
67 |
65 66
|
oveq12d |
|- ( A = -oo -> ( ( A *e B ) +e ( A *e C ) ) = ( ( -oo *e B ) +e ( -oo *e C ) ) ) |
68 |
|
xmulmnf2 |
|- ( ( B e. RR* /\ 0 < B ) -> ( -oo *e B ) = -oo ) |
69 |
2 68
|
sylan |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( -oo *e B ) = -oo ) |
70 |
69
|
oveq1d |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( ( -oo *e B ) +e ( -oo *e C ) ) = ( -oo +e ( -oo *e C ) ) ) |
71 |
67 70
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A = -oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( -oo +e ( -oo *e C ) ) ) |
72 |
|
oveq1 |
|- ( A = -oo -> ( A *e ( B +e C ) ) = ( -oo *e ( B +e C ) ) ) |
73 |
|
xmulmnf2 |
|- ( ( ( B +e C ) e. RR* /\ 0 < ( B +e C ) ) -> ( -oo *e ( B +e C ) ) = -oo ) |
74 |
31 41 73
|
syl2an2r |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( -oo *e ( B +e C ) ) = -oo ) |
75 |
72 74
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A = -oo ) -> ( A *e ( B +e C ) ) = -oo ) |
76 |
64 71 75
|
3eqtr4rd |
|- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A = -oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
77 |
|
simpl1 |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> A e. RR* ) |
78 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
79 |
77 78
|
sylib |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
80 |
7 45 76 79
|
mpjao3dan |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
81 |
|
simp1 |
|- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> A e. RR* ) |
82 |
|
xmulcl |
|- ( ( A e. RR* /\ C e. RR* ) -> ( A *e C ) e. RR* ) |
83 |
81 4 82
|
syl2anc |
|- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> ( A *e C ) e. RR* ) |
84 |
83
|
adantr |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 = B ) -> ( A *e C ) e. RR* ) |
85 |
|
xaddid2 |
|- ( ( A *e C ) e. RR* -> ( 0 +e ( A *e C ) ) = ( A *e C ) ) |
86 |
84 85
|
syl |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 = B ) -> ( 0 +e ( A *e C ) ) = ( A *e C ) ) |
87 |
|
oveq2 |
|- ( 0 = B -> ( A *e 0 ) = ( A *e B ) ) |
88 |
87
|
eqcomd |
|- ( 0 = B -> ( A *e B ) = ( A *e 0 ) ) |
89 |
|
xmul01 |
|- ( A e. RR* -> ( A *e 0 ) = 0 ) |
90 |
89
|
3ad2ant1 |
|- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> ( A *e 0 ) = 0 ) |
91 |
88 90
|
sylan9eqr |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 = B ) -> ( A *e B ) = 0 ) |
92 |
91
|
oveq1d |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 = B ) -> ( ( A *e B ) +e ( A *e C ) ) = ( 0 +e ( A *e C ) ) ) |
93 |
|
oveq1 |
|- ( 0 = B -> ( 0 +e C ) = ( B +e C ) ) |
94 |
93
|
eqcomd |
|- ( 0 = B -> ( B +e C ) = ( 0 +e C ) ) |
95 |
|
xaddid2 |
|- ( C e. RR* -> ( 0 +e C ) = C ) |
96 |
4 95
|
syl |
|- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> ( 0 +e C ) = C ) |
97 |
94 96
|
sylan9eqr |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 = B ) -> ( B +e C ) = C ) |
98 |
97
|
oveq2d |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 = B ) -> ( A *e ( B +e C ) ) = ( A *e C ) ) |
99 |
86 92 98
|
3eqtr4rd |
|- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 = B ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
100 |
|
simp2r |
|- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> 0 <_ B ) |
101 |
|
xrleloe |
|- ( ( 0 e. RR* /\ B e. RR* ) -> ( 0 <_ B <-> ( 0 < B \/ 0 = B ) ) ) |
102 |
32 2 101
|
sylancr |
|- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> ( 0 <_ B <-> ( 0 < B \/ 0 = B ) ) ) |
103 |
100 102
|
mpbid |
|- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> ( 0 < B \/ 0 = B ) ) |
104 |
80 99 103
|
mpjaodan |
|- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |