| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl1 |  |-  ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> A e. RR ) | 
						
							| 2 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 3 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 4 |  | recn |  |-  ( C e. RR -> C e. CC ) | 
						
							| 5 |  | adddi |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. ( B + C ) ) = ( ( A x. B ) + ( A x. C ) ) ) | 
						
							| 6 | 2 3 4 5 | syl3an |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. ( B + C ) ) = ( ( A x. B ) + ( A x. C ) ) ) | 
						
							| 7 | 6 | 3expa |  |-  ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A x. ( B + C ) ) = ( ( A x. B ) + ( A x. C ) ) ) | 
						
							| 8 |  | readdcl |  |-  ( ( B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) | 
						
							| 9 |  | rexmul |  |-  ( ( A e. RR /\ ( B + C ) e. RR ) -> ( A *e ( B + C ) ) = ( A x. ( B + C ) ) ) | 
						
							| 10 | 8 9 | sylan2 |  |-  ( ( A e. RR /\ ( B e. RR /\ C e. RR ) ) -> ( A *e ( B + C ) ) = ( A x. ( B + C ) ) ) | 
						
							| 11 | 10 | anassrs |  |-  ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e ( B + C ) ) = ( A x. ( B + C ) ) ) | 
						
							| 12 |  | remulcl |  |-  ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A x. B ) e. RR ) | 
						
							| 14 |  | remulcl |  |-  ( ( A e. RR /\ C e. RR ) -> ( A x. C ) e. RR ) | 
						
							| 15 | 14 | adantlr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A x. C ) e. RR ) | 
						
							| 16 | 13 15 | rexaddd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A x. B ) +e ( A x. C ) ) = ( ( A x. B ) + ( A x. C ) ) ) | 
						
							| 17 | 7 11 16 | 3eqtr4d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e ( B + C ) ) = ( ( A x. B ) +e ( A x. C ) ) ) | 
						
							| 18 |  | rexadd |  |-  ( ( B e. RR /\ C e. RR ) -> ( B +e C ) = ( B + C ) ) | 
						
							| 19 | 18 | adantll |  |-  ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( B +e C ) = ( B + C ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( A *e ( B + C ) ) ) | 
						
							| 21 |  | rexmul |  |-  ( ( A e. RR /\ B e. RR ) -> ( A *e B ) = ( A x. B ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e B ) = ( A x. B ) ) | 
						
							| 23 |  | rexmul |  |-  ( ( A e. RR /\ C e. RR ) -> ( A *e C ) = ( A x. C ) ) | 
						
							| 24 | 23 | adantlr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e C ) = ( A x. C ) ) | 
						
							| 25 | 22 24 | oveq12d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A x. B ) +e ( A x. C ) ) ) | 
						
							| 26 | 17 20 25 | 3eqtr4d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) | 
						
							| 27 | 1 26 | sylanl1 |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) | 
						
							| 28 |  | rexr |  |-  ( A e. RR -> A e. RR* ) | 
						
							| 29 | 28 | 3ad2ant1 |  |-  ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> A e. RR* ) | 
						
							| 30 |  | xmulpnf1 |  |-  ( ( A e. RR* /\ 0 < A ) -> ( A *e +oo ) = +oo ) | 
						
							| 31 | 29 30 | sylan |  |-  ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( A *e +oo ) = +oo ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( A *e +oo ) = +oo ) | 
						
							| 33 | 21 12 | eqeltrd |  |-  ( ( A e. RR /\ B e. RR ) -> ( A *e B ) e. RR ) | 
						
							| 34 | 1 33 | sylan |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( A *e B ) e. RR ) | 
						
							| 35 |  | rexr |  |-  ( ( A *e B ) e. RR -> ( A *e B ) e. RR* ) | 
						
							| 36 |  | renemnf |  |-  ( ( A *e B ) e. RR -> ( A *e B ) =/= -oo ) | 
						
							| 37 |  | xaddpnf1 |  |-  ( ( ( A *e B ) e. RR* /\ ( A *e B ) =/= -oo ) -> ( ( A *e B ) +e +oo ) = +oo ) | 
						
							| 38 | 35 36 37 | syl2anc |  |-  ( ( A *e B ) e. RR -> ( ( A *e B ) +e +oo ) = +oo ) | 
						
							| 39 | 34 38 | syl |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( ( A *e B ) +e +oo ) = +oo ) | 
						
							| 40 | 32 39 | eqtr4d |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( A *e +oo ) = ( ( A *e B ) +e +oo ) ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = +oo ) -> ( A *e +oo ) = ( ( A *e B ) +e +oo ) ) | 
						
							| 42 |  | oveq2 |  |-  ( C = +oo -> ( B +e C ) = ( B +e +oo ) ) | 
						
							| 43 |  | rexr |  |-  ( B e. RR -> B e. RR* ) | 
						
							| 44 |  | renemnf |  |-  ( B e. RR -> B =/= -oo ) | 
						
							| 45 |  | xaddpnf1 |  |-  ( ( B e. RR* /\ B =/= -oo ) -> ( B +e +oo ) = +oo ) | 
						
							| 46 | 43 44 45 | syl2anc |  |-  ( B e. RR -> ( B +e +oo ) = +oo ) | 
						
							| 47 | 46 | adantl |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( B +e +oo ) = +oo ) | 
						
							| 48 | 42 47 | sylan9eqr |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = +oo ) -> ( B +e C ) = +oo ) | 
						
							| 49 | 48 | oveq2d |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( A *e +oo ) ) | 
						
							| 50 |  | oveq2 |  |-  ( C = +oo -> ( A *e C ) = ( A *e +oo ) ) | 
						
							| 51 | 50 32 | sylan9eqr |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = +oo ) -> ( A *e C ) = +oo ) | 
						
							| 52 | 51 | oveq2d |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = +oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e B ) +e +oo ) ) | 
						
							| 53 | 41 49 52 | 3eqtr4d |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) | 
						
							| 54 |  | xmulmnf1 |  |-  ( ( A e. RR* /\ 0 < A ) -> ( A *e -oo ) = -oo ) | 
						
							| 55 | 29 54 | sylan |  |-  ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( A *e -oo ) = -oo ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( A *e -oo ) = -oo ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( A *e -oo ) = -oo ) | 
						
							| 58 | 34 | adantr |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( A *e B ) e. RR ) | 
						
							| 59 |  | renepnf |  |-  ( ( A *e B ) e. RR -> ( A *e B ) =/= +oo ) | 
						
							| 60 |  | xaddmnf1 |  |-  ( ( ( A *e B ) e. RR* /\ ( A *e B ) =/= +oo ) -> ( ( A *e B ) +e -oo ) = -oo ) | 
						
							| 61 | 35 59 60 | syl2anc |  |-  ( ( A *e B ) e. RR -> ( ( A *e B ) +e -oo ) = -oo ) | 
						
							| 62 | 58 61 | syl |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( ( A *e B ) +e -oo ) = -oo ) | 
						
							| 63 | 57 62 | eqtr4d |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( A *e -oo ) = ( ( A *e B ) +e -oo ) ) | 
						
							| 64 |  | oveq2 |  |-  ( C = -oo -> ( B +e C ) = ( B +e -oo ) ) | 
						
							| 65 |  | renepnf |  |-  ( B e. RR -> B =/= +oo ) | 
						
							| 66 |  | xaddmnf1 |  |-  ( ( B e. RR* /\ B =/= +oo ) -> ( B +e -oo ) = -oo ) | 
						
							| 67 | 43 65 66 | syl2anc |  |-  ( B e. RR -> ( B +e -oo ) = -oo ) | 
						
							| 68 | 67 | adantl |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( B +e -oo ) = -oo ) | 
						
							| 69 | 64 68 | sylan9eqr |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( B +e C ) = -oo ) | 
						
							| 70 | 69 | oveq2d |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( A *e -oo ) ) | 
						
							| 71 |  | oveq2 |  |-  ( C = -oo -> ( A *e C ) = ( A *e -oo ) ) | 
						
							| 72 | 71 56 | sylan9eqr |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( A *e C ) = -oo ) | 
						
							| 73 | 72 | oveq2d |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e B ) +e -oo ) ) | 
						
							| 74 | 63 70 73 | 3eqtr4d |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) | 
						
							| 75 |  | simpl3 |  |-  ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> C e. RR* ) | 
						
							| 76 |  | elxr |  |-  ( C e. RR* <-> ( C e. RR \/ C = +oo \/ C = -oo ) ) | 
						
							| 77 | 75 76 | sylib |  |-  ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) | 
						
							| 78 | 77 | adantr |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) | 
						
							| 79 | 27 53 74 78 | mpjao3dan |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) | 
						
							| 80 | 31 | ad2antrr |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( A *e +oo ) = +oo ) | 
						
							| 81 | 1 | adantr |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) -> A e. RR ) | 
						
							| 82 | 23 14 | eqeltrd |  |-  ( ( A e. RR /\ C e. RR ) -> ( A *e C ) e. RR ) | 
						
							| 83 | 81 82 | sylan |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( A *e C ) e. RR ) | 
						
							| 84 |  | rexr |  |-  ( ( A *e C ) e. RR -> ( A *e C ) e. RR* ) | 
						
							| 85 |  | renemnf |  |-  ( ( A *e C ) e. RR -> ( A *e C ) =/= -oo ) | 
						
							| 86 |  | xaddpnf2 |  |-  ( ( ( A *e C ) e. RR* /\ ( A *e C ) =/= -oo ) -> ( +oo +e ( A *e C ) ) = +oo ) | 
						
							| 87 | 84 85 86 | syl2anc |  |-  ( ( A *e C ) e. RR -> ( +oo +e ( A *e C ) ) = +oo ) | 
						
							| 88 | 83 87 | syl |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( +oo +e ( A *e C ) ) = +oo ) | 
						
							| 89 | 80 88 | eqtr4d |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( A *e +oo ) = ( +oo +e ( A *e C ) ) ) | 
						
							| 90 |  | simpr |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) -> B = +oo ) | 
						
							| 91 | 90 | oveq1d |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) -> ( B +e C ) = ( +oo +e C ) ) | 
						
							| 92 |  | rexr |  |-  ( C e. RR -> C e. RR* ) | 
						
							| 93 |  | renemnf |  |-  ( C e. RR -> C =/= -oo ) | 
						
							| 94 |  | xaddpnf2 |  |-  ( ( C e. RR* /\ C =/= -oo ) -> ( +oo +e C ) = +oo ) | 
						
							| 95 | 92 93 94 | syl2anc |  |-  ( C e. RR -> ( +oo +e C ) = +oo ) | 
						
							| 96 | 91 95 | sylan9eq |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( B +e C ) = +oo ) | 
						
							| 97 | 96 | oveq2d |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( A *e +oo ) ) | 
						
							| 98 |  | oveq2 |  |-  ( B = +oo -> ( A *e B ) = ( A *e +oo ) ) | 
						
							| 99 | 98 31 | sylan9eqr |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) -> ( A *e B ) = +oo ) | 
						
							| 100 | 99 | adantr |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( A *e B ) = +oo ) | 
						
							| 101 | 100 | oveq1d |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( ( A *e B ) +e ( A *e C ) ) = ( +oo +e ( A *e C ) ) ) | 
						
							| 102 | 89 97 101 | 3eqtr4d |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) | 
						
							| 103 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 104 |  | pnfnemnf |  |-  +oo =/= -oo | 
						
							| 105 |  | xaddpnf1 |  |-  ( ( +oo e. RR* /\ +oo =/= -oo ) -> ( +oo +e +oo ) = +oo ) | 
						
							| 106 | 103 104 105 | mp2an |  |-  ( +oo +e +oo ) = +oo | 
						
							| 107 | 31 31 | oveq12d |  |-  ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e +oo ) +e ( A *e +oo ) ) = ( +oo +e +oo ) ) | 
						
							| 108 | 106 107 31 | 3eqtr4a |  |-  ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e +oo ) +e ( A *e +oo ) ) = ( A *e +oo ) ) | 
						
							| 109 | 108 | ad2antrr |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = +oo ) -> ( ( A *e +oo ) +e ( A *e +oo ) ) = ( A *e +oo ) ) | 
						
							| 110 | 98 50 | oveqan12d |  |-  ( ( B = +oo /\ C = +oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e +oo ) +e ( A *e +oo ) ) ) | 
						
							| 111 | 110 | adantll |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = +oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e +oo ) +e ( A *e +oo ) ) ) | 
						
							| 112 |  | oveq12 |  |-  ( ( B = +oo /\ C = +oo ) -> ( B +e C ) = ( +oo +e +oo ) ) | 
						
							| 113 | 112 106 | eqtrdi |  |-  ( ( B = +oo /\ C = +oo ) -> ( B +e C ) = +oo ) | 
						
							| 114 | 113 | oveq2d |  |-  ( ( B = +oo /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( A *e +oo ) ) | 
						
							| 115 | 114 | adantll |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( A *e +oo ) ) | 
						
							| 116 | 109 111 115 | 3eqtr4rd |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) | 
						
							| 117 |  | pnfaddmnf |  |-  ( +oo +e -oo ) = 0 | 
						
							| 118 | 31 55 | oveq12d |  |-  ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e +oo ) +e ( A *e -oo ) ) = ( +oo +e -oo ) ) | 
						
							| 119 |  | xmul01 |  |-  ( A e. RR* -> ( A *e 0 ) = 0 ) | 
						
							| 120 | 1 28 119 | 3syl |  |-  ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( A *e 0 ) = 0 ) | 
						
							| 121 | 117 118 120 | 3eqtr4a |  |-  ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e +oo ) +e ( A *e -oo ) ) = ( A *e 0 ) ) | 
						
							| 122 | 121 | ad2antrr |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = -oo ) -> ( ( A *e +oo ) +e ( A *e -oo ) ) = ( A *e 0 ) ) | 
						
							| 123 | 98 71 | oveqan12d |  |-  ( ( B = +oo /\ C = -oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e +oo ) +e ( A *e -oo ) ) ) | 
						
							| 124 | 123 | adantll |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = -oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e +oo ) +e ( A *e -oo ) ) ) | 
						
							| 125 |  | oveq12 |  |-  ( ( B = +oo /\ C = -oo ) -> ( B +e C ) = ( +oo +e -oo ) ) | 
						
							| 126 | 125 117 | eqtrdi |  |-  ( ( B = +oo /\ C = -oo ) -> ( B +e C ) = 0 ) | 
						
							| 127 | 126 | oveq2d |  |-  ( ( B = +oo /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( A *e 0 ) ) | 
						
							| 128 | 127 | adantll |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( A *e 0 ) ) | 
						
							| 129 | 122 124 128 | 3eqtr4rd |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) | 
						
							| 130 | 77 | adantr |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) | 
						
							| 131 | 102 116 129 130 | mpjao3dan |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) | 
						
							| 132 | 55 | ad2antrr |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( A *e -oo ) = -oo ) | 
						
							| 133 | 1 | adantr |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) -> A e. RR ) | 
						
							| 134 | 133 82 | sylan |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( A *e C ) e. RR ) | 
						
							| 135 |  | renepnf |  |-  ( ( A *e C ) e. RR -> ( A *e C ) =/= +oo ) | 
						
							| 136 |  | xaddmnf2 |  |-  ( ( ( A *e C ) e. RR* /\ ( A *e C ) =/= +oo ) -> ( -oo +e ( A *e C ) ) = -oo ) | 
						
							| 137 | 84 135 136 | syl2anc |  |-  ( ( A *e C ) e. RR -> ( -oo +e ( A *e C ) ) = -oo ) | 
						
							| 138 | 134 137 | syl |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( -oo +e ( A *e C ) ) = -oo ) | 
						
							| 139 | 132 138 | eqtr4d |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( A *e -oo ) = ( -oo +e ( A *e C ) ) ) | 
						
							| 140 |  | simpr |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) -> B = -oo ) | 
						
							| 141 | 140 | oveq1d |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) -> ( B +e C ) = ( -oo +e C ) ) | 
						
							| 142 |  | renepnf |  |-  ( C e. RR -> C =/= +oo ) | 
						
							| 143 |  | xaddmnf2 |  |-  ( ( C e. RR* /\ C =/= +oo ) -> ( -oo +e C ) = -oo ) | 
						
							| 144 | 92 142 143 | syl2anc |  |-  ( C e. RR -> ( -oo +e C ) = -oo ) | 
						
							| 145 | 141 144 | sylan9eq |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( B +e C ) = -oo ) | 
						
							| 146 | 145 | oveq2d |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( A *e -oo ) ) | 
						
							| 147 |  | oveq2 |  |-  ( B = -oo -> ( A *e B ) = ( A *e -oo ) ) | 
						
							| 148 | 147 55 | sylan9eqr |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) -> ( A *e B ) = -oo ) | 
						
							| 149 | 148 | adantr |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( A *e B ) = -oo ) | 
						
							| 150 | 149 | oveq1d |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( ( A *e B ) +e ( A *e C ) ) = ( -oo +e ( A *e C ) ) ) | 
						
							| 151 | 139 146 150 | 3eqtr4d |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) | 
						
							| 152 | 55 31 | oveq12d |  |-  ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e -oo ) +e ( A *e +oo ) ) = ( -oo +e +oo ) ) | 
						
							| 153 |  | mnfaddpnf |  |-  ( -oo +e +oo ) = 0 | 
						
							| 154 | 152 153 | eqtrdi |  |-  ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e -oo ) +e ( A *e +oo ) ) = 0 ) | 
						
							| 155 | 120 154 | eqtr4d |  |-  ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( A *e 0 ) = ( ( A *e -oo ) +e ( A *e +oo ) ) ) | 
						
							| 156 | 155 | ad2antrr |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = +oo ) -> ( A *e 0 ) = ( ( A *e -oo ) +e ( A *e +oo ) ) ) | 
						
							| 157 |  | oveq12 |  |-  ( ( B = -oo /\ C = +oo ) -> ( B +e C ) = ( -oo +e +oo ) ) | 
						
							| 158 | 157 153 | eqtrdi |  |-  ( ( B = -oo /\ C = +oo ) -> ( B +e C ) = 0 ) | 
						
							| 159 | 158 | oveq2d |  |-  ( ( B = -oo /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( A *e 0 ) ) | 
						
							| 160 | 159 | adantll |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( A *e 0 ) ) | 
						
							| 161 | 147 50 | oveqan12d |  |-  ( ( B = -oo /\ C = +oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e -oo ) +e ( A *e +oo ) ) ) | 
						
							| 162 | 161 | adantll |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = +oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e -oo ) +e ( A *e +oo ) ) ) | 
						
							| 163 | 156 160 162 | 3eqtr4d |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) | 
						
							| 164 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 165 |  | mnfnepnf |  |-  -oo =/= +oo | 
						
							| 166 |  | xaddmnf1 |  |-  ( ( -oo e. RR* /\ -oo =/= +oo ) -> ( -oo +e -oo ) = -oo ) | 
						
							| 167 | 164 165 166 | mp2an |  |-  ( -oo +e -oo ) = -oo | 
						
							| 168 | 55 55 | oveq12d |  |-  ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e -oo ) +e ( A *e -oo ) ) = ( -oo +e -oo ) ) | 
						
							| 169 | 167 168 55 | 3eqtr4a |  |-  ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e -oo ) +e ( A *e -oo ) ) = ( A *e -oo ) ) | 
						
							| 170 | 169 | ad2antrr |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = -oo ) -> ( ( A *e -oo ) +e ( A *e -oo ) ) = ( A *e -oo ) ) | 
						
							| 171 | 147 71 | oveqan12d |  |-  ( ( B = -oo /\ C = -oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e -oo ) +e ( A *e -oo ) ) ) | 
						
							| 172 | 171 | adantll |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = -oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e -oo ) +e ( A *e -oo ) ) ) | 
						
							| 173 |  | oveq12 |  |-  ( ( B = -oo /\ C = -oo ) -> ( B +e C ) = ( -oo +e -oo ) ) | 
						
							| 174 | 173 167 | eqtrdi |  |-  ( ( B = -oo /\ C = -oo ) -> ( B +e C ) = -oo ) | 
						
							| 175 | 174 | oveq2d |  |-  ( ( B = -oo /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( A *e -oo ) ) | 
						
							| 176 | 175 | adantll |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( A *e -oo ) ) | 
						
							| 177 | 170 172 176 | 3eqtr4rd |  |-  ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) | 
						
							| 178 | 77 | adantr |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) | 
						
							| 179 | 151 163 177 178 | mpjao3dan |  |-  ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) | 
						
							| 180 |  | simpl2 |  |-  ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> B e. RR* ) | 
						
							| 181 |  | elxr |  |-  ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) | 
						
							| 182 | 180 181 | sylib |  |-  ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) | 
						
							| 183 | 79 131 179 182 | mpjao3dan |  |-  ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |