Description: Extended real version of addid2 . (Contributed by Mario Carneiro, 20-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | xaddid2 | |- ( A e. RR* -> ( 0 +e A ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr | |- 0 e. RR* |
|
2 | xaddcom | |- ( ( 0 e. RR* /\ A e. RR* ) -> ( 0 +e A ) = ( A +e 0 ) ) |
|
3 | 1 2 | mpan | |- ( A e. RR* -> ( 0 +e A ) = ( A +e 0 ) ) |
4 | xaddid1 | |- ( A e. RR* -> ( A +e 0 ) = A ) |
|
5 | 3 4 | eqtrd | |- ( A e. RR* -> ( 0 +e A ) = A ) |