Metamath Proof Explorer


Theorem xaddid2

Description: Extended real version of addid2 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xaddid2
|- ( A e. RR* -> ( 0 +e A ) = A )

Proof

Step Hyp Ref Expression
1 0xr
 |-  0 e. RR*
2 xaddcom
 |-  ( ( 0 e. RR* /\ A e. RR* ) -> ( 0 +e A ) = ( A +e 0 ) )
3 1 2 mpan
 |-  ( A e. RR* -> ( 0 +e A ) = ( A +e 0 ) )
4 xaddid1
 |-  ( A e. RR* -> ( A +e 0 ) = A )
5 3 4 eqtrd
 |-  ( A e. RR* -> ( 0 +e A ) = A )