Description: Extended real version of addlid . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xaddlid | |- ( A e. RR* -> ( 0 +e A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | |- 0 e. RR* |
|
| 2 | xaddcom | |- ( ( 0 e. RR* /\ A e. RR* ) -> ( 0 +e A ) = ( A +e 0 ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. RR* -> ( 0 +e A ) = ( A +e 0 ) ) |
| 4 | xaddrid | |- ( A e. RR* -> ( A +e 0 ) = A ) |
|
| 5 | 3 4 | eqtrd | |- ( A e. RR* -> ( 0 +e A ) = A ) |