| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnfxr |
|- -oo e. RR* |
| 2 |
|
xaddval |
|- ( ( A e. RR* /\ -oo e. RR* ) -> ( A +e -oo ) = if ( A = +oo , if ( -oo = -oo , 0 , +oo ) , if ( A = -oo , if ( -oo = +oo , 0 , -oo ) , if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) ) ) ) |
| 3 |
1 2
|
mpan2 |
|- ( A e. RR* -> ( A +e -oo ) = if ( A = +oo , if ( -oo = -oo , 0 , +oo ) , if ( A = -oo , if ( -oo = +oo , 0 , -oo ) , if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) ) ) ) |
| 4 |
|
ifnefalse |
|- ( A =/= +oo -> if ( A = +oo , if ( -oo = -oo , 0 , +oo ) , if ( A = -oo , if ( -oo = +oo , 0 , -oo ) , if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) ) ) = if ( A = -oo , if ( -oo = +oo , 0 , -oo ) , if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) ) ) |
| 5 |
|
mnfnepnf |
|- -oo =/= +oo |
| 6 |
|
ifnefalse |
|- ( -oo =/= +oo -> if ( -oo = +oo , 0 , -oo ) = -oo ) |
| 7 |
5 6
|
ax-mp |
|- if ( -oo = +oo , 0 , -oo ) = -oo |
| 8 |
|
ifnefalse |
|- ( -oo =/= +oo -> if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) = if ( -oo = -oo , -oo , ( A + -oo ) ) ) |
| 9 |
5 8
|
ax-mp |
|- if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) = if ( -oo = -oo , -oo , ( A + -oo ) ) |
| 10 |
|
eqid |
|- -oo = -oo |
| 11 |
10
|
iftruei |
|- if ( -oo = -oo , -oo , ( A + -oo ) ) = -oo |
| 12 |
9 11
|
eqtri |
|- if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) = -oo |
| 13 |
|
ifeq12 |
|- ( ( if ( -oo = +oo , 0 , -oo ) = -oo /\ if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) = -oo ) -> if ( A = -oo , if ( -oo = +oo , 0 , -oo ) , if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) ) = if ( A = -oo , -oo , -oo ) ) |
| 14 |
7 12 13
|
mp2an |
|- if ( A = -oo , if ( -oo = +oo , 0 , -oo ) , if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) ) = if ( A = -oo , -oo , -oo ) |
| 15 |
|
ifid |
|- if ( A = -oo , -oo , -oo ) = -oo |
| 16 |
14 15
|
eqtri |
|- if ( A = -oo , if ( -oo = +oo , 0 , -oo ) , if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) ) = -oo |
| 17 |
4 16
|
eqtrdi |
|- ( A =/= +oo -> if ( A = +oo , if ( -oo = -oo , 0 , +oo ) , if ( A = -oo , if ( -oo = +oo , 0 , -oo ) , if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) ) ) = -oo ) |
| 18 |
3 17
|
sylan9eq |
|- ( ( A e. RR* /\ A =/= +oo ) -> ( A +e -oo ) = -oo ) |