Metamath Proof Explorer


Theorem xaddmnf1

Description: Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xaddmnf1
|- ( ( A e. RR* /\ A =/= +oo ) -> ( A +e -oo ) = -oo )

Proof

Step Hyp Ref Expression
1 mnfxr
 |-  -oo e. RR*
2 xaddval
 |-  ( ( A e. RR* /\ -oo e. RR* ) -> ( A +e -oo ) = if ( A = +oo , if ( -oo = -oo , 0 , +oo ) , if ( A = -oo , if ( -oo = +oo , 0 , -oo ) , if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) ) ) )
3 1 2 mpan2
 |-  ( A e. RR* -> ( A +e -oo ) = if ( A = +oo , if ( -oo = -oo , 0 , +oo ) , if ( A = -oo , if ( -oo = +oo , 0 , -oo ) , if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) ) ) )
4 ifnefalse
 |-  ( A =/= +oo -> if ( A = +oo , if ( -oo = -oo , 0 , +oo ) , if ( A = -oo , if ( -oo = +oo , 0 , -oo ) , if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) ) ) = if ( A = -oo , if ( -oo = +oo , 0 , -oo ) , if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) ) )
5 mnfnepnf
 |-  -oo =/= +oo
6 ifnefalse
 |-  ( -oo =/= +oo -> if ( -oo = +oo , 0 , -oo ) = -oo )
7 5 6 ax-mp
 |-  if ( -oo = +oo , 0 , -oo ) = -oo
8 ifnefalse
 |-  ( -oo =/= +oo -> if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) = if ( -oo = -oo , -oo , ( A + -oo ) ) )
9 5 8 ax-mp
 |-  if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) = if ( -oo = -oo , -oo , ( A + -oo ) )
10 eqid
 |-  -oo = -oo
11 10 iftruei
 |-  if ( -oo = -oo , -oo , ( A + -oo ) ) = -oo
12 9 11 eqtri
 |-  if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) = -oo
13 ifeq12
 |-  ( ( if ( -oo = +oo , 0 , -oo ) = -oo /\ if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) = -oo ) -> if ( A = -oo , if ( -oo = +oo , 0 , -oo ) , if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) ) = if ( A = -oo , -oo , -oo ) )
14 7 12 13 mp2an
 |-  if ( A = -oo , if ( -oo = +oo , 0 , -oo ) , if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) ) = if ( A = -oo , -oo , -oo )
15 ifid
 |-  if ( A = -oo , -oo , -oo ) = -oo
16 14 15 eqtri
 |-  if ( A = -oo , if ( -oo = +oo , 0 , -oo ) , if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) ) = -oo
17 4 16 eqtrdi
 |-  ( A =/= +oo -> if ( A = +oo , if ( -oo = -oo , 0 , +oo ) , if ( A = -oo , if ( -oo = +oo , 0 , -oo ) , if ( -oo = +oo , +oo , if ( -oo = -oo , -oo , ( A + -oo ) ) ) ) ) = -oo )
18 3 17 sylan9eq
 |-  ( ( A e. RR* /\ A =/= +oo ) -> ( A +e -oo ) = -oo )