| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mnfxr | 
							 |-  -oo e. RR*  | 
						
						
							| 2 | 
							
								
							 | 
							xaddval | 
							 |-  ( ( -oo e. RR* /\ A e. RR* ) -> ( -oo +e A ) = if ( -oo = +oo , if ( A = -oo , 0 , +oo ) , if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							mpan | 
							 |-  ( A e. RR* -> ( -oo +e A ) = if ( -oo = +oo , if ( A = -oo , 0 , +oo ) , if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							mnfnepnf | 
							 |-  -oo =/= +oo  | 
						
						
							| 5 | 
							
								
							 | 
							ifnefalse | 
							 |-  ( -oo =/= +oo -> if ( -oo = +oo , if ( A = -oo , 0 , +oo ) , if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) = if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							ax-mp | 
							 |-  if ( -oo = +oo , if ( A = -oo , 0 , +oo ) , if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) = if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  -oo = -oo  | 
						
						
							| 8 | 
							
								7
							 | 
							iftruei | 
							 |-  if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) = if ( A = +oo , 0 , -oo )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							eqtri | 
							 |-  if ( -oo = +oo , if ( A = -oo , 0 , +oo ) , if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) = if ( A = +oo , 0 , -oo )  | 
						
						
							| 10 | 
							
								
							 | 
							ifnefalse | 
							 |-  ( A =/= +oo -> if ( A = +oo , 0 , -oo ) = -oo )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							eqtrid | 
							 |-  ( A =/= +oo -> if ( -oo = +oo , if ( A = -oo , 0 , +oo ) , if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) = -oo )  | 
						
						
							| 12 | 
							
								3 11
							 | 
							sylan9eq | 
							 |-  ( ( A e. RR* /\ A =/= +oo ) -> ( -oo +e A ) = -oo )  |