| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrnemnf |
|- ( ( A e. RR* /\ A =/= -oo ) <-> ( A e. RR \/ A = +oo ) ) |
| 2 |
|
xrnemnf |
|- ( ( B e. RR* /\ B =/= -oo ) <-> ( B e. RR \/ B = +oo ) ) |
| 3 |
|
rexadd |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) |
| 4 |
|
readdcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
| 5 |
3 4
|
eqeltrd |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) e. RR ) |
| 6 |
5
|
renemnfd |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) =/= -oo ) |
| 7 |
|
oveq2 |
|- ( B = +oo -> ( A +e B ) = ( A +e +oo ) ) |
| 8 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
| 9 |
|
renemnf |
|- ( A e. RR -> A =/= -oo ) |
| 10 |
|
xaddpnf1 |
|- ( ( A e. RR* /\ A =/= -oo ) -> ( A +e +oo ) = +oo ) |
| 11 |
8 9 10
|
syl2anc |
|- ( A e. RR -> ( A +e +oo ) = +oo ) |
| 12 |
7 11
|
sylan9eqr |
|- ( ( A e. RR /\ B = +oo ) -> ( A +e B ) = +oo ) |
| 13 |
|
pnfnemnf |
|- +oo =/= -oo |
| 14 |
13
|
a1i |
|- ( ( A e. RR /\ B = +oo ) -> +oo =/= -oo ) |
| 15 |
12 14
|
eqnetrd |
|- ( ( A e. RR /\ B = +oo ) -> ( A +e B ) =/= -oo ) |
| 16 |
6 15
|
jaodan |
|- ( ( A e. RR /\ ( B e. RR \/ B = +oo ) ) -> ( A +e B ) =/= -oo ) |
| 17 |
2 16
|
sylan2b |
|- ( ( A e. RR /\ ( B e. RR* /\ B =/= -oo ) ) -> ( A +e B ) =/= -oo ) |
| 18 |
|
oveq1 |
|- ( A = +oo -> ( A +e B ) = ( +oo +e B ) ) |
| 19 |
|
xaddpnf2 |
|- ( ( B e. RR* /\ B =/= -oo ) -> ( +oo +e B ) = +oo ) |
| 20 |
18 19
|
sylan9eq |
|- ( ( A = +oo /\ ( B e. RR* /\ B =/= -oo ) ) -> ( A +e B ) = +oo ) |
| 21 |
13
|
a1i |
|- ( ( A = +oo /\ ( B e. RR* /\ B =/= -oo ) ) -> +oo =/= -oo ) |
| 22 |
20 21
|
eqnetrd |
|- ( ( A = +oo /\ ( B e. RR* /\ B =/= -oo ) ) -> ( A +e B ) =/= -oo ) |
| 23 |
17 22
|
jaoian |
|- ( ( ( A e. RR \/ A = +oo ) /\ ( B e. RR* /\ B =/= -oo ) ) -> ( A +e B ) =/= -oo ) |
| 24 |
1 23
|
sylanb |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) ) -> ( A +e B ) =/= -oo ) |