Step |
Hyp |
Ref |
Expression |
1 |
|
xrnepnf |
|- ( ( A e. RR* /\ A =/= +oo ) <-> ( A e. RR \/ A = -oo ) ) |
2 |
|
xrnepnf |
|- ( ( B e. RR* /\ B =/= +oo ) <-> ( B e. RR \/ B = -oo ) ) |
3 |
|
rexadd |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) |
4 |
|
readdcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
5 |
3 4
|
eqeltrd |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) e. RR ) |
6 |
5
|
renepnfd |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) =/= +oo ) |
7 |
|
oveq2 |
|- ( B = -oo -> ( A +e B ) = ( A +e -oo ) ) |
8 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
9 |
|
renepnf |
|- ( A e. RR -> A =/= +oo ) |
10 |
|
xaddmnf1 |
|- ( ( A e. RR* /\ A =/= +oo ) -> ( A +e -oo ) = -oo ) |
11 |
8 9 10
|
syl2anc |
|- ( A e. RR -> ( A +e -oo ) = -oo ) |
12 |
7 11
|
sylan9eqr |
|- ( ( A e. RR /\ B = -oo ) -> ( A +e B ) = -oo ) |
13 |
|
mnfnepnf |
|- -oo =/= +oo |
14 |
13
|
a1i |
|- ( ( A e. RR /\ B = -oo ) -> -oo =/= +oo ) |
15 |
12 14
|
eqnetrd |
|- ( ( A e. RR /\ B = -oo ) -> ( A +e B ) =/= +oo ) |
16 |
6 15
|
jaodan |
|- ( ( A e. RR /\ ( B e. RR \/ B = -oo ) ) -> ( A +e B ) =/= +oo ) |
17 |
2 16
|
sylan2b |
|- ( ( A e. RR /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) =/= +oo ) |
18 |
|
oveq1 |
|- ( A = -oo -> ( A +e B ) = ( -oo +e B ) ) |
19 |
|
xaddmnf2 |
|- ( ( B e. RR* /\ B =/= +oo ) -> ( -oo +e B ) = -oo ) |
20 |
18 19
|
sylan9eq |
|- ( ( A = -oo /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) = -oo ) |
21 |
13
|
a1i |
|- ( ( A = -oo /\ ( B e. RR* /\ B =/= +oo ) ) -> -oo =/= +oo ) |
22 |
20 21
|
eqnetrd |
|- ( ( A = -oo /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) =/= +oo ) |
23 |
17 22
|
jaoian |
|- ( ( ( A e. RR \/ A = -oo ) /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) =/= +oo ) |
24 |
1 23
|
sylanb |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) =/= +oo ) |