| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pnfxr |
|- +oo e. RR* |
| 2 |
|
xaddval |
|- ( ( A e. RR* /\ +oo e. RR* ) -> ( A +e +oo ) = if ( A = +oo , if ( +oo = -oo , 0 , +oo ) , if ( A = -oo , if ( +oo = +oo , 0 , -oo ) , if ( +oo = +oo , +oo , if ( +oo = -oo , -oo , ( A + +oo ) ) ) ) ) ) |
| 3 |
1 2
|
mpan2 |
|- ( A e. RR* -> ( A +e +oo ) = if ( A = +oo , if ( +oo = -oo , 0 , +oo ) , if ( A = -oo , if ( +oo = +oo , 0 , -oo ) , if ( +oo = +oo , +oo , if ( +oo = -oo , -oo , ( A + +oo ) ) ) ) ) ) |
| 4 |
|
pnfnemnf |
|- +oo =/= -oo |
| 5 |
|
ifnefalse |
|- ( +oo =/= -oo -> if ( +oo = -oo , 0 , +oo ) = +oo ) |
| 6 |
4 5
|
mp1i |
|- ( A =/= -oo -> if ( +oo = -oo , 0 , +oo ) = +oo ) |
| 7 |
|
ifnefalse |
|- ( A =/= -oo -> if ( A = -oo , if ( +oo = +oo , 0 , -oo ) , if ( +oo = +oo , +oo , if ( +oo = -oo , -oo , ( A + +oo ) ) ) ) = if ( +oo = +oo , +oo , if ( +oo = -oo , -oo , ( A + +oo ) ) ) ) |
| 8 |
|
eqid |
|- +oo = +oo |
| 9 |
8
|
iftruei |
|- if ( +oo = +oo , +oo , if ( +oo = -oo , -oo , ( A + +oo ) ) ) = +oo |
| 10 |
7 9
|
eqtrdi |
|- ( A =/= -oo -> if ( A = -oo , if ( +oo = +oo , 0 , -oo ) , if ( +oo = +oo , +oo , if ( +oo = -oo , -oo , ( A + +oo ) ) ) ) = +oo ) |
| 11 |
6 10
|
ifeq12d |
|- ( A =/= -oo -> if ( A = +oo , if ( +oo = -oo , 0 , +oo ) , if ( A = -oo , if ( +oo = +oo , 0 , -oo ) , if ( +oo = +oo , +oo , if ( +oo = -oo , -oo , ( A + +oo ) ) ) ) ) = if ( A = +oo , +oo , +oo ) ) |
| 12 |
|
ifid |
|- if ( A = +oo , +oo , +oo ) = +oo |
| 13 |
11 12
|
eqtrdi |
|- ( A =/= -oo -> if ( A = +oo , if ( +oo = -oo , 0 , +oo ) , if ( A = -oo , if ( +oo = +oo , 0 , -oo ) , if ( +oo = +oo , +oo , if ( +oo = -oo , -oo , ( A + +oo ) ) ) ) ) = +oo ) |
| 14 |
3 13
|
sylan9eq |
|- ( ( A e. RR* /\ A =/= -oo ) -> ( A +e +oo ) = +oo ) |