Step |
Hyp |
Ref |
Expression |
1 |
|
pnfxr |
|- +oo e. RR* |
2 |
|
xaddval |
|- ( ( +oo e. RR* /\ A e. RR* ) -> ( +oo +e A ) = if ( +oo = +oo , if ( A = -oo , 0 , +oo ) , if ( +oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( +oo + A ) ) ) ) ) ) |
3 |
1 2
|
mpan |
|- ( A e. RR* -> ( +oo +e A ) = if ( +oo = +oo , if ( A = -oo , 0 , +oo ) , if ( +oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( +oo + A ) ) ) ) ) ) |
4 |
|
eqid |
|- +oo = +oo |
5 |
4
|
iftruei |
|- if ( +oo = +oo , if ( A = -oo , 0 , +oo ) , if ( +oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( +oo + A ) ) ) ) ) = if ( A = -oo , 0 , +oo ) |
6 |
|
ifnefalse |
|- ( A =/= -oo -> if ( A = -oo , 0 , +oo ) = +oo ) |
7 |
5 6
|
eqtrid |
|- ( A =/= -oo -> if ( +oo = +oo , if ( A = -oo , 0 , +oo ) , if ( +oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( +oo + A ) ) ) ) ) = +oo ) |
8 |
3 7
|
sylan9eq |
|- ( ( A e. RR* /\ A =/= -oo ) -> ( +oo +e A ) = +oo ) |