| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pnfxr |
|- +oo e. RR* |
| 2 |
|
xaddval |
|- ( ( +oo e. RR* /\ A e. RR* ) -> ( +oo +e A ) = if ( +oo = +oo , if ( A = -oo , 0 , +oo ) , if ( +oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( +oo + A ) ) ) ) ) ) |
| 3 |
1 2
|
mpan |
|- ( A e. RR* -> ( +oo +e A ) = if ( +oo = +oo , if ( A = -oo , 0 , +oo ) , if ( +oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( +oo + A ) ) ) ) ) ) |
| 4 |
|
eqid |
|- +oo = +oo |
| 5 |
4
|
iftruei |
|- if ( +oo = +oo , if ( A = -oo , 0 , +oo ) , if ( +oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( +oo + A ) ) ) ) ) = if ( A = -oo , 0 , +oo ) |
| 6 |
|
ifnefalse |
|- ( A =/= -oo -> if ( A = -oo , 0 , +oo ) = +oo ) |
| 7 |
5 6
|
eqtrid |
|- ( A =/= -oo -> if ( +oo = +oo , if ( A = -oo , 0 , +oo ) , if ( +oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( +oo + A ) ) ) ) ) = +oo ) |
| 8 |
3 7
|
sylan9eq |
|- ( ( A e. RR* /\ A =/= -oo ) -> ( +oo +e A ) = +oo ) |