Metamath Proof Explorer


Theorem xaddridd

Description: 0 is a right identity for extended real addition. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis xaddridd.1
|- ( ph -> A e. RR* )
Assertion xaddridd
|- ( ph -> ( A +e 0 ) = A )

Proof

Step Hyp Ref Expression
1 xaddridd.1
 |-  ( ph -> A e. RR* )
2 xaddrid
 |-  ( A e. RR* -> ( A +e 0 ) = A )
3 1 2 syl
 |-  ( ph -> ( A +e 0 ) = A )