| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( x = A /\ y = B ) -> x = A ) |
| 2 |
1
|
eqeq1d |
|- ( ( x = A /\ y = B ) -> ( x = +oo <-> A = +oo ) ) |
| 3 |
|
simpr |
|- ( ( x = A /\ y = B ) -> y = B ) |
| 4 |
3
|
eqeq1d |
|- ( ( x = A /\ y = B ) -> ( y = -oo <-> B = -oo ) ) |
| 5 |
4
|
ifbid |
|- ( ( x = A /\ y = B ) -> if ( y = -oo , 0 , +oo ) = if ( B = -oo , 0 , +oo ) ) |
| 6 |
1
|
eqeq1d |
|- ( ( x = A /\ y = B ) -> ( x = -oo <-> A = -oo ) ) |
| 7 |
3
|
eqeq1d |
|- ( ( x = A /\ y = B ) -> ( y = +oo <-> B = +oo ) ) |
| 8 |
7
|
ifbid |
|- ( ( x = A /\ y = B ) -> if ( y = +oo , 0 , -oo ) = if ( B = +oo , 0 , -oo ) ) |
| 9 |
|
oveq12 |
|- ( ( x = A /\ y = B ) -> ( x + y ) = ( A + B ) ) |
| 10 |
4 9
|
ifbieq2d |
|- ( ( x = A /\ y = B ) -> if ( y = -oo , -oo , ( x + y ) ) = if ( B = -oo , -oo , ( A + B ) ) ) |
| 11 |
7 10
|
ifbieq2d |
|- ( ( x = A /\ y = B ) -> if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) = if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) |
| 12 |
6 8 11
|
ifbieq12d |
|- ( ( x = A /\ y = B ) -> if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) = if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) |
| 13 |
2 5 12
|
ifbieq12d |
|- ( ( x = A /\ y = B ) -> if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) = if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) ) |
| 14 |
|
df-xadd |
|- +e = ( x e. RR* , y e. RR* |-> if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) ) |
| 15 |
|
c0ex |
|- 0 e. _V |
| 16 |
|
pnfex |
|- +oo e. _V |
| 17 |
15 16
|
ifex |
|- if ( B = -oo , 0 , +oo ) e. _V |
| 18 |
|
mnfxr |
|- -oo e. RR* |
| 19 |
18
|
elexi |
|- -oo e. _V |
| 20 |
15 19
|
ifex |
|- if ( B = +oo , 0 , -oo ) e. _V |
| 21 |
|
ovex |
|- ( A + B ) e. _V |
| 22 |
19 21
|
ifex |
|- if ( B = -oo , -oo , ( A + B ) ) e. _V |
| 23 |
16 22
|
ifex |
|- if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) e. _V |
| 24 |
20 23
|
ifex |
|- if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) e. _V |
| 25 |
17 24
|
ifex |
|- if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) e. _V |
| 26 |
13 14 25
|
ovmpoa |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) = if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) ) |