| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 |  |-  ( ( D e. ( PsMet ` X ) /\ P e. X /\ ( R e. RR* /\ 0 < R ) ) -> P e. X ) | 
						
							| 2 |  | psmet0 |  |-  ( ( D e. ( PsMet ` X ) /\ P e. X ) -> ( P D P ) = 0 ) | 
						
							| 3 | 2 | 3adant3 |  |-  ( ( D e. ( PsMet ` X ) /\ P e. X /\ ( R e. RR* /\ 0 < R ) ) -> ( P D P ) = 0 ) | 
						
							| 4 |  | simp3r |  |-  ( ( D e. ( PsMet ` X ) /\ P e. X /\ ( R e. RR* /\ 0 < R ) ) -> 0 < R ) | 
						
							| 5 | 3 4 | eqbrtrd |  |-  ( ( D e. ( PsMet ` X ) /\ P e. X /\ ( R e. RR* /\ 0 < R ) ) -> ( P D P ) < R ) | 
						
							| 6 |  | elblps |  |-  ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR* ) -> ( P e. ( P ( ball ` D ) R ) <-> ( P e. X /\ ( P D P ) < R ) ) ) | 
						
							| 7 | 6 | 3adant3r |  |-  ( ( D e. ( PsMet ` X ) /\ P e. X /\ ( R e. RR* /\ 0 < R ) ) -> ( P e. ( P ( ball ` D ) R ) <-> ( P e. X /\ ( P D P ) < R ) ) ) | 
						
							| 8 | 1 5 7 | mpbir2and |  |-  ( ( D e. ( PsMet ` X ) /\ P e. X /\ ( R e. RR* /\ 0 < R ) ) -> P e. ( P ( ball ` D ) R ) ) |