Step |
Hyp |
Ref |
Expression |
1 |
|
n0 |
|- ( ( P ( ball ` D ) R ) =/= (/) <-> E. x x e. ( P ( ball ` D ) R ) ) |
2 |
|
elbl |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( x e. ( P ( ball ` D ) R ) <-> ( x e. X /\ ( P D x ) < R ) ) ) |
3 |
|
xmetge0 |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ x e. X ) -> 0 <_ ( P D x ) ) |
4 |
3
|
3expa |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ x e. X ) -> 0 <_ ( P D x ) ) |
5 |
4
|
3adantl3 |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ x e. X ) -> 0 <_ ( P D x ) ) |
6 |
|
0xr |
|- 0 e. RR* |
7 |
|
xmetcl |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ x e. X ) -> ( P D x ) e. RR* ) |
8 |
7
|
3expa |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ x e. X ) -> ( P D x ) e. RR* ) |
9 |
8
|
3adantl3 |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ x e. X ) -> ( P D x ) e. RR* ) |
10 |
|
simpl3 |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ x e. X ) -> R e. RR* ) |
11 |
|
xrlelttr |
|- ( ( 0 e. RR* /\ ( P D x ) e. RR* /\ R e. RR* ) -> ( ( 0 <_ ( P D x ) /\ ( P D x ) < R ) -> 0 < R ) ) |
12 |
6 9 10 11
|
mp3an2i |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ x e. X ) -> ( ( 0 <_ ( P D x ) /\ ( P D x ) < R ) -> 0 < R ) ) |
13 |
5 12
|
mpand |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ x e. X ) -> ( ( P D x ) < R -> 0 < R ) ) |
14 |
13
|
expimpd |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( ( x e. X /\ ( P D x ) < R ) -> 0 < R ) ) |
15 |
2 14
|
sylbid |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( x e. ( P ( ball ` D ) R ) -> 0 < R ) ) |
16 |
15
|
exlimdv |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( E. x x e. ( P ( ball ` D ) R ) -> 0 < R ) ) |
17 |
1 16
|
syl5bi |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( ( P ( ball ` D ) R ) =/= (/) -> 0 < R ) ) |
18 |
|
xblcntr |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ ( R e. RR* /\ 0 < R ) ) -> P e. ( P ( ball ` D ) R ) ) |
19 |
18
|
ne0d |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ ( R e. RR* /\ 0 < R ) ) -> ( P ( ball ` D ) R ) =/= (/) ) |
20 |
19
|
3expa |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ 0 < R ) ) -> ( P ( ball ` D ) R ) =/= (/) ) |
21 |
20
|
expr |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ R e. RR* ) -> ( 0 < R -> ( P ( ball ` D ) R ) =/= (/) ) ) |
22 |
21
|
3impa |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( 0 < R -> ( P ( ball ` D ) R ) =/= (/) ) ) |
23 |
17 22
|
impbid |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( ( P ( ball ` D ) R ) =/= (/) <-> 0 < R ) ) |