Step |
Hyp |
Ref |
Expression |
1 |
|
pnfxr |
|- +oo e. RR* |
2 |
|
elbl |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ +oo e. RR* ) -> ( A e. ( P ( ball ` D ) +oo ) <-> ( A e. X /\ ( P D A ) < +oo ) ) ) |
3 |
1 2
|
mp3an3 |
|- ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( A e. ( P ( ball ` D ) +oo ) <-> ( A e. X /\ ( P D A ) < +oo ) ) ) |
4 |
|
xmetcl |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> ( P D A ) e. RR* ) |
5 |
|
xmetge0 |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> 0 <_ ( P D A ) ) |
6 |
|
ge0nemnf |
|- ( ( ( P D A ) e. RR* /\ 0 <_ ( P D A ) ) -> ( P D A ) =/= -oo ) |
7 |
4 5 6
|
syl2anc |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> ( P D A ) =/= -oo ) |
8 |
|
ngtmnft |
|- ( ( P D A ) e. RR* -> ( ( P D A ) = -oo <-> -. -oo < ( P D A ) ) ) |
9 |
4 8
|
syl |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> ( ( P D A ) = -oo <-> -. -oo < ( P D A ) ) ) |
10 |
9
|
necon2abid |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> ( -oo < ( P D A ) <-> ( P D A ) =/= -oo ) ) |
11 |
7 10
|
mpbird |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> -oo < ( P D A ) ) |
12 |
11
|
biantrurd |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> ( ( P D A ) < +oo <-> ( -oo < ( P D A ) /\ ( P D A ) < +oo ) ) ) |
13 |
|
xrrebnd |
|- ( ( P D A ) e. RR* -> ( ( P D A ) e. RR <-> ( -oo < ( P D A ) /\ ( P D A ) < +oo ) ) ) |
14 |
4 13
|
syl |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> ( ( P D A ) e. RR <-> ( -oo < ( P D A ) /\ ( P D A ) < +oo ) ) ) |
15 |
12 14
|
bitr4d |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> ( ( P D A ) < +oo <-> ( P D A ) e. RR ) ) |
16 |
15
|
3expa |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ A e. X ) -> ( ( P D A ) < +oo <-> ( P D A ) e. RR ) ) |
17 |
16
|
pm5.32da |
|- ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( ( A e. X /\ ( P D A ) < +oo ) <-> ( A e. X /\ ( P D A ) e. RR ) ) ) |
18 |
3 17
|
bitrd |
|- ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( A e. ( P ( ball ` D ) +oo ) <-> ( A e. X /\ ( P D A ) e. RR ) ) ) |