| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 2 |  | elbl |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ +oo e. RR* ) -> ( A e. ( P ( ball ` D ) +oo ) <-> ( A e. X /\ ( P D A ) < +oo ) ) ) | 
						
							| 3 | 1 2 | mp3an3 |  |-  ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( A e. ( P ( ball ` D ) +oo ) <-> ( A e. X /\ ( P D A ) < +oo ) ) ) | 
						
							| 4 |  | xmetcl |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> ( P D A ) e. RR* ) | 
						
							| 5 |  | xmetge0 |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> 0 <_ ( P D A ) ) | 
						
							| 6 |  | ge0nemnf |  |-  ( ( ( P D A ) e. RR* /\ 0 <_ ( P D A ) ) -> ( P D A ) =/= -oo ) | 
						
							| 7 | 4 5 6 | syl2anc |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> ( P D A ) =/= -oo ) | 
						
							| 8 |  | ngtmnft |  |-  ( ( P D A ) e. RR* -> ( ( P D A ) = -oo <-> -. -oo < ( P D A ) ) ) | 
						
							| 9 | 4 8 | syl |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> ( ( P D A ) = -oo <-> -. -oo < ( P D A ) ) ) | 
						
							| 10 | 9 | necon2abid |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> ( -oo < ( P D A ) <-> ( P D A ) =/= -oo ) ) | 
						
							| 11 | 7 10 | mpbird |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> -oo < ( P D A ) ) | 
						
							| 12 | 11 | biantrurd |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> ( ( P D A ) < +oo <-> ( -oo < ( P D A ) /\ ( P D A ) < +oo ) ) ) | 
						
							| 13 |  | xrrebnd |  |-  ( ( P D A ) e. RR* -> ( ( P D A ) e. RR <-> ( -oo < ( P D A ) /\ ( P D A ) < +oo ) ) ) | 
						
							| 14 | 4 13 | syl |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> ( ( P D A ) e. RR <-> ( -oo < ( P D A ) /\ ( P D A ) < +oo ) ) ) | 
						
							| 15 | 12 14 | bitr4d |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> ( ( P D A ) < +oo <-> ( P D A ) e. RR ) ) | 
						
							| 16 | 15 | 3expa |  |-  ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ A e. X ) -> ( ( P D A ) < +oo <-> ( P D A ) e. RR ) ) | 
						
							| 17 | 16 | pm5.32da |  |-  ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( ( A e. X /\ ( P D A ) < +oo ) <-> ( A e. X /\ ( P D A ) e. RR ) ) ) | 
						
							| 18 | 3 17 | bitrd |  |-  ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( A e. ( P ( ball ` D ) +oo ) <-> ( A e. X /\ ( P D A ) e. RR ) ) ) |