| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xblss2.1 |  |-  ( ph -> D e. ( *Met ` X ) ) | 
						
							| 2 |  | xblss2.2 |  |-  ( ph -> P e. X ) | 
						
							| 3 |  | xblss2.3 |  |-  ( ph -> Q e. X ) | 
						
							| 4 |  | xblss2.4 |  |-  ( ph -> R e. RR* ) | 
						
							| 5 |  | xblss2.5 |  |-  ( ph -> S e. RR* ) | 
						
							| 6 |  | xblss2.6 |  |-  ( ph -> ( P D Q ) e. RR ) | 
						
							| 7 |  | xblss2.7 |  |-  ( ph -> ( P D Q ) <_ ( S +e -e R ) ) | 
						
							| 8 |  | elbl |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( x e. ( P ( ball ` D ) R ) <-> ( x e. X /\ ( P D x ) < R ) ) ) | 
						
							| 9 | 1 2 4 8 | syl3anc |  |-  ( ph -> ( x e. ( P ( ball ` D ) R ) <-> ( x e. X /\ ( P D x ) < R ) ) ) | 
						
							| 10 | 9 | simprbda |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> x e. X ) | 
						
							| 11 | 1 | adantr |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> D e. ( *Met ` X ) ) | 
						
							| 12 | 3 | adantr |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> Q e. X ) | 
						
							| 13 |  | xmetcl |  |-  ( ( D e. ( *Met ` X ) /\ Q e. X /\ x e. X ) -> ( Q D x ) e. RR* ) | 
						
							| 14 | 11 12 10 13 | syl3anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( Q D x ) e. RR* ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( Q D x ) e. RR* ) | 
						
							| 16 | 6 | adantr |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( P D Q ) e. RR ) | 
						
							| 17 | 16 | rexrd |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( P D Q ) e. RR* ) | 
						
							| 18 | 4 | adantr |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> R e. RR* ) | 
						
							| 19 | 17 18 | xaddcld |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) +e R ) e. RR* ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( ( P D Q ) +e R ) e. RR* ) | 
						
							| 21 | 5 | ad2antrr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> S e. RR* ) | 
						
							| 22 | 2 | adantr |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> P e. X ) | 
						
							| 23 |  | xmetcl |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ x e. X ) -> ( P D x ) e. RR* ) | 
						
							| 24 | 11 22 10 23 | syl3anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( P D x ) e. RR* ) | 
						
							| 25 | 17 24 | xaddcld |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) +e ( P D x ) ) e. RR* ) | 
						
							| 26 |  | xmettri2 |  |-  ( ( D e. ( *Met ` X ) /\ ( P e. X /\ Q e. X /\ x e. X ) ) -> ( Q D x ) <_ ( ( P D Q ) +e ( P D x ) ) ) | 
						
							| 27 | 11 22 12 10 26 | syl13anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( Q D x ) <_ ( ( P D Q ) +e ( P D x ) ) ) | 
						
							| 28 | 9 | simplbda |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( P D x ) < R ) | 
						
							| 29 |  | xltadd2 |  |-  ( ( ( P D x ) e. RR* /\ R e. RR* /\ ( P D Q ) e. RR ) -> ( ( P D x ) < R <-> ( ( P D Q ) +e ( P D x ) ) < ( ( P D Q ) +e R ) ) ) | 
						
							| 30 | 24 18 16 29 | syl3anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D x ) < R <-> ( ( P D Q ) +e ( P D x ) ) < ( ( P D Q ) +e R ) ) ) | 
						
							| 31 | 28 30 | mpbid |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) +e ( P D x ) ) < ( ( P D Q ) +e R ) ) | 
						
							| 32 | 14 25 19 27 31 | xrlelttrd |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( Q D x ) < ( ( P D Q ) +e R ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( Q D x ) < ( ( P D Q ) +e R ) ) | 
						
							| 34 | 5 | adantr |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> S e. RR* ) | 
						
							| 35 | 18 | xnegcld |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> -e R e. RR* ) | 
						
							| 36 | 34 35 | xaddcld |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( S +e -e R ) e. RR* ) | 
						
							| 37 | 7 | adantr |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( P D Q ) <_ ( S +e -e R ) ) | 
						
							| 38 |  | xleadd1a |  |-  ( ( ( ( P D Q ) e. RR* /\ ( S +e -e R ) e. RR* /\ R e. RR* ) /\ ( P D Q ) <_ ( S +e -e R ) ) -> ( ( P D Q ) +e R ) <_ ( ( S +e -e R ) +e R ) ) | 
						
							| 39 | 17 36 18 37 38 | syl31anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) +e R ) <_ ( ( S +e -e R ) +e R ) ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( ( P D Q ) +e R ) <_ ( ( S +e -e R ) +e R ) ) | 
						
							| 41 |  | xnpcan |  |-  ( ( S e. RR* /\ R e. RR ) -> ( ( S +e -e R ) +e R ) = S ) | 
						
							| 42 | 34 41 | sylan |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( ( S +e -e R ) +e R ) = S ) | 
						
							| 43 | 40 42 | breqtrd |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( ( P D Q ) +e R ) <_ S ) | 
						
							| 44 | 15 20 21 33 43 | xrltletrd |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( Q D x ) < S ) | 
						
							| 45 | 28 | adantr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( P D x ) < R ) | 
						
							| 46 | 7 | ad2antrr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( P D Q ) <_ ( S +e -e R ) ) | 
						
							| 47 |  | 0xr |  |-  0 e. RR* | 
						
							| 48 | 47 | a1i |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> 0 e. RR* ) | 
						
							| 49 |  | xmetge0 |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ Q e. X ) -> 0 <_ ( P D Q ) ) | 
						
							| 50 | 11 22 12 49 | syl3anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> 0 <_ ( P D Q ) ) | 
						
							| 51 | 48 17 36 50 37 | xrletrd |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> 0 <_ ( S +e -e R ) ) | 
						
							| 52 |  | ge0nemnf |  |-  ( ( ( S +e -e R ) e. RR* /\ 0 <_ ( S +e -e R ) ) -> ( S +e -e R ) =/= -oo ) | 
						
							| 53 | 36 51 52 | syl2anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( S +e -e R ) =/= -oo ) | 
						
							| 54 | 53 | adantr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( S +e -e R ) =/= -oo ) | 
						
							| 55 | 5 | ad2antrr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> S e. RR* ) | 
						
							| 56 |  | xaddmnf1 |  |-  ( ( S e. RR* /\ S =/= +oo ) -> ( S +e -oo ) = -oo ) | 
						
							| 57 | 56 | ex |  |-  ( S e. RR* -> ( S =/= +oo -> ( S +e -oo ) = -oo ) ) | 
						
							| 58 | 55 57 | syl |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( S =/= +oo -> ( S +e -oo ) = -oo ) ) | 
						
							| 59 |  | simpr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> R = +oo ) | 
						
							| 60 |  | xnegeq |  |-  ( R = +oo -> -e R = -e +oo ) | 
						
							| 61 | 59 60 | syl |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> -e R = -e +oo ) | 
						
							| 62 |  | xnegpnf |  |-  -e +oo = -oo | 
						
							| 63 | 61 62 | eqtrdi |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> -e R = -oo ) | 
						
							| 64 | 63 | oveq2d |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( S +e -e R ) = ( S +e -oo ) ) | 
						
							| 65 | 64 | eqeq1d |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( ( S +e -e R ) = -oo <-> ( S +e -oo ) = -oo ) ) | 
						
							| 66 | 58 65 | sylibrd |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( S =/= +oo -> ( S +e -e R ) = -oo ) ) | 
						
							| 67 | 66 | necon1d |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( ( S +e -e R ) =/= -oo -> S = +oo ) ) | 
						
							| 68 | 54 67 | mpd |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> S = +oo ) | 
						
							| 69 | 68 63 | oveq12d |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( S +e -e R ) = ( +oo +e -oo ) ) | 
						
							| 70 |  | pnfaddmnf |  |-  ( +oo +e -oo ) = 0 | 
						
							| 71 | 69 70 | eqtrdi |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( S +e -e R ) = 0 ) | 
						
							| 72 | 46 71 | breqtrd |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( P D Q ) <_ 0 ) | 
						
							| 73 | 50 | biantrud |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) <_ 0 <-> ( ( P D Q ) <_ 0 /\ 0 <_ ( P D Q ) ) ) ) | 
						
							| 74 |  | xrletri3 |  |-  ( ( ( P D Q ) e. RR* /\ 0 e. RR* ) -> ( ( P D Q ) = 0 <-> ( ( P D Q ) <_ 0 /\ 0 <_ ( P D Q ) ) ) ) | 
						
							| 75 | 17 47 74 | sylancl |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) = 0 <-> ( ( P D Q ) <_ 0 /\ 0 <_ ( P D Q ) ) ) ) | 
						
							| 76 |  | xmeteq0 |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ Q e. X ) -> ( ( P D Q ) = 0 <-> P = Q ) ) | 
						
							| 77 | 11 22 12 76 | syl3anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) = 0 <-> P = Q ) ) | 
						
							| 78 | 73 75 77 | 3bitr2d |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) <_ 0 <-> P = Q ) ) | 
						
							| 79 | 78 | adantr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( ( P D Q ) <_ 0 <-> P = Q ) ) | 
						
							| 80 | 72 79 | mpbid |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> P = Q ) | 
						
							| 81 | 80 | oveq1d |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( P D x ) = ( Q D x ) ) | 
						
							| 82 | 59 68 | eqtr4d |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> R = S ) | 
						
							| 83 | 45 81 82 | 3brtr3d |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( Q D x ) < S ) | 
						
							| 84 |  | xmetge0 |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ x e. X ) -> 0 <_ ( P D x ) ) | 
						
							| 85 | 11 22 10 84 | syl3anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> 0 <_ ( P D x ) ) | 
						
							| 86 | 48 24 18 85 28 | xrlelttrd |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> 0 < R ) | 
						
							| 87 | 48 18 86 | xrltled |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> 0 <_ R ) | 
						
							| 88 |  | ge0nemnf |  |-  ( ( R e. RR* /\ 0 <_ R ) -> R =/= -oo ) | 
						
							| 89 | 18 87 88 | syl2anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> R =/= -oo ) | 
						
							| 90 | 18 89 | jca |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( R e. RR* /\ R =/= -oo ) ) | 
						
							| 91 |  | xrnemnf |  |-  ( ( R e. RR* /\ R =/= -oo ) <-> ( R e. RR \/ R = +oo ) ) | 
						
							| 92 | 90 91 | sylib |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( R e. RR \/ R = +oo ) ) | 
						
							| 93 | 44 83 92 | mpjaodan |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( Q D x ) < S ) | 
						
							| 94 |  | elbl |  |-  ( ( D e. ( *Met ` X ) /\ Q e. X /\ S e. RR* ) -> ( x e. ( Q ( ball ` D ) S ) <-> ( x e. X /\ ( Q D x ) < S ) ) ) | 
						
							| 95 | 11 12 34 94 | syl3anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( x e. ( Q ( ball ` D ) S ) <-> ( x e. X /\ ( Q D x ) < S ) ) ) | 
						
							| 96 | 10 93 95 | mpbir2and |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> x e. ( Q ( ball ` D ) S ) ) | 
						
							| 97 | 96 | ex |  |-  ( ph -> ( x e. ( P ( ball ` D ) R ) -> x e. ( Q ( ball ` D ) S ) ) ) | 
						
							| 98 | 97 | ssrdv |  |-  ( ph -> ( P ( ball ` D ) R ) C_ ( Q ( ball ` D ) S ) ) |