| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xblss2ps.1 |  |-  ( ph -> D e. ( PsMet ` X ) ) | 
						
							| 2 |  | xblss2ps.2 |  |-  ( ph -> P e. X ) | 
						
							| 3 |  | xblss2ps.3 |  |-  ( ph -> Q e. X ) | 
						
							| 4 |  | xblss2ps.4 |  |-  ( ph -> R e. RR* ) | 
						
							| 5 |  | xblss2ps.5 |  |-  ( ph -> S e. RR* ) | 
						
							| 6 |  | xblss2ps.6 |  |-  ( ph -> ( P D Q ) e. RR ) | 
						
							| 7 |  | xblss2ps.7 |  |-  ( ph -> ( P D Q ) <_ ( S +e -e R ) ) | 
						
							| 8 |  | elblps |  |-  ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR* ) -> ( x e. ( P ( ball ` D ) R ) <-> ( x e. X /\ ( P D x ) < R ) ) ) | 
						
							| 9 | 1 2 4 8 | syl3anc |  |-  ( ph -> ( x e. ( P ( ball ` D ) R ) <-> ( x e. X /\ ( P D x ) < R ) ) ) | 
						
							| 10 | 9 | simprbda |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> x e. X ) | 
						
							| 11 | 1 | adantr |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> D e. ( PsMet ` X ) ) | 
						
							| 12 | 3 | adantr |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> Q e. X ) | 
						
							| 13 |  | psmetcl |  |-  ( ( D e. ( PsMet ` X ) /\ Q e. X /\ x e. X ) -> ( Q D x ) e. RR* ) | 
						
							| 14 | 11 12 10 13 | syl3anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( Q D x ) e. RR* ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( Q D x ) e. RR* ) | 
						
							| 16 | 6 | adantr |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( P D Q ) e. RR ) | 
						
							| 17 | 16 | rexrd |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( P D Q ) e. RR* ) | 
						
							| 18 | 4 | adantr |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> R e. RR* ) | 
						
							| 19 | 17 18 | xaddcld |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) +e R ) e. RR* ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( ( P D Q ) +e R ) e. RR* ) | 
						
							| 21 | 5 | ad2antrr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> S e. RR* ) | 
						
							| 22 | 2 | adantr |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> P e. X ) | 
						
							| 23 |  | psmetcl |  |-  ( ( D e. ( PsMet ` X ) /\ P e. X /\ x e. X ) -> ( P D x ) e. RR* ) | 
						
							| 24 | 11 22 10 23 | syl3anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( P D x ) e. RR* ) | 
						
							| 25 | 17 24 | xaddcld |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) +e ( P D x ) ) e. RR* ) | 
						
							| 26 |  | psmettri2 |  |-  ( ( D e. ( PsMet ` X ) /\ ( P e. X /\ Q e. X /\ x e. X ) ) -> ( Q D x ) <_ ( ( P D Q ) +e ( P D x ) ) ) | 
						
							| 27 | 11 22 12 10 26 | syl13anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( Q D x ) <_ ( ( P D Q ) +e ( P D x ) ) ) | 
						
							| 28 | 9 | simplbda |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( P D x ) < R ) | 
						
							| 29 |  | xltadd2 |  |-  ( ( ( P D x ) e. RR* /\ R e. RR* /\ ( P D Q ) e. RR ) -> ( ( P D x ) < R <-> ( ( P D Q ) +e ( P D x ) ) < ( ( P D Q ) +e R ) ) ) | 
						
							| 30 | 24 18 16 29 | syl3anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D x ) < R <-> ( ( P D Q ) +e ( P D x ) ) < ( ( P D Q ) +e R ) ) ) | 
						
							| 31 | 28 30 | mpbid |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) +e ( P D x ) ) < ( ( P D Q ) +e R ) ) | 
						
							| 32 | 14 25 19 27 31 | xrlelttrd |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( Q D x ) < ( ( P D Q ) +e R ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( Q D x ) < ( ( P D Q ) +e R ) ) | 
						
							| 34 | 5 | adantr |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> S e. RR* ) | 
						
							| 35 | 18 | xnegcld |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> -e R e. RR* ) | 
						
							| 36 | 34 35 | xaddcld |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( S +e -e R ) e. RR* ) | 
						
							| 37 | 7 | adantr |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( P D Q ) <_ ( S +e -e R ) ) | 
						
							| 38 |  | xleadd1a |  |-  ( ( ( ( P D Q ) e. RR* /\ ( S +e -e R ) e. RR* /\ R e. RR* ) /\ ( P D Q ) <_ ( S +e -e R ) ) -> ( ( P D Q ) +e R ) <_ ( ( S +e -e R ) +e R ) ) | 
						
							| 39 | 17 36 18 37 38 | syl31anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) +e R ) <_ ( ( S +e -e R ) +e R ) ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( ( P D Q ) +e R ) <_ ( ( S +e -e R ) +e R ) ) | 
						
							| 41 |  | xnpcan |  |-  ( ( S e. RR* /\ R e. RR ) -> ( ( S +e -e R ) +e R ) = S ) | 
						
							| 42 | 34 41 | sylan |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( ( S +e -e R ) +e R ) = S ) | 
						
							| 43 | 40 42 | breqtrd |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( ( P D Q ) +e R ) <_ S ) | 
						
							| 44 | 15 20 21 33 43 | xrltletrd |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( Q D x ) < S ) | 
						
							| 45 | 14 | adantr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( Q D x ) e. RR* ) | 
						
							| 46 | 6 | ad2antrr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( P D Q ) e. RR ) | 
						
							| 47 |  | simpll |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ph ) | 
						
							| 48 |  | simplr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> x e. ( P ( ball ` D ) R ) ) | 
						
							| 49 |  | simpr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> R = +oo ) | 
						
							| 50 | 49 | oveq2d |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( P ( ball ` D ) R ) = ( P ( ball ` D ) +oo ) ) | 
						
							| 51 | 48 50 | eleqtrd |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> x e. ( P ( ball ` D ) +oo ) ) | 
						
							| 52 |  | xblpnfps |  |-  ( ( D e. ( PsMet ` X ) /\ P e. X ) -> ( x e. ( P ( ball ` D ) +oo ) <-> ( x e. X /\ ( P D x ) e. RR ) ) ) | 
						
							| 53 | 1 2 52 | syl2anc |  |-  ( ph -> ( x e. ( P ( ball ` D ) +oo ) <-> ( x e. X /\ ( P D x ) e. RR ) ) ) | 
						
							| 54 | 53 | simplbda |  |-  ( ( ph /\ x e. ( P ( ball ` D ) +oo ) ) -> ( P D x ) e. RR ) | 
						
							| 55 | 47 51 54 | syl2anc |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( P D x ) e. RR ) | 
						
							| 56 | 46 55 | readdcld |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( ( P D Q ) + ( P D x ) ) e. RR ) | 
						
							| 57 | 56 | rexrd |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( ( P D Q ) + ( P D x ) ) e. RR* ) | 
						
							| 58 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 59 | 58 | a1i |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> +oo e. RR* ) | 
						
							| 60 | 1 | ad2antrr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> D e. ( PsMet ` X ) ) | 
						
							| 61 | 2 | ad2antrr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> P e. X ) | 
						
							| 62 | 3 | ad2antrr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> Q e. X ) | 
						
							| 63 | 10 | adantr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> x e. X ) | 
						
							| 64 | 60 61 62 63 26 | syl13anc |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( Q D x ) <_ ( ( P D Q ) +e ( P D x ) ) ) | 
						
							| 65 | 46 55 | rexaddd |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( ( P D Q ) +e ( P D x ) ) = ( ( P D Q ) + ( P D x ) ) ) | 
						
							| 66 | 64 65 | breqtrd |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( Q D x ) <_ ( ( P D Q ) + ( P D x ) ) ) | 
						
							| 67 | 56 | ltpnfd |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( ( P D Q ) + ( P D x ) ) < +oo ) | 
						
							| 68 | 45 57 59 66 67 | xrlelttrd |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( Q D x ) < +oo ) | 
						
							| 69 |  | 0xr |  |-  0 e. RR* | 
						
							| 70 | 69 | a1i |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> 0 e. RR* ) | 
						
							| 71 |  | psmetge0 |  |-  ( ( D e. ( PsMet ` X ) /\ P e. X /\ Q e. X ) -> 0 <_ ( P D Q ) ) | 
						
							| 72 | 11 22 12 71 | syl3anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> 0 <_ ( P D Q ) ) | 
						
							| 73 | 70 17 36 72 37 | xrletrd |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> 0 <_ ( S +e -e R ) ) | 
						
							| 74 |  | ge0nemnf |  |-  ( ( ( S +e -e R ) e. RR* /\ 0 <_ ( S +e -e R ) ) -> ( S +e -e R ) =/= -oo ) | 
						
							| 75 | 36 73 74 | syl2anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( S +e -e R ) =/= -oo ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( S +e -e R ) =/= -oo ) | 
						
							| 77 | 5 | ad2antrr |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> S e. RR* ) | 
						
							| 78 |  | xaddmnf1 |  |-  ( ( S e. RR* /\ S =/= +oo ) -> ( S +e -oo ) = -oo ) | 
						
							| 79 | 78 | ex |  |-  ( S e. RR* -> ( S =/= +oo -> ( S +e -oo ) = -oo ) ) | 
						
							| 80 | 77 79 | syl |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( S =/= +oo -> ( S +e -oo ) = -oo ) ) | 
						
							| 81 |  | xnegeq |  |-  ( R = +oo -> -e R = -e +oo ) | 
						
							| 82 | 49 81 | syl |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> -e R = -e +oo ) | 
						
							| 83 |  | xnegpnf |  |-  -e +oo = -oo | 
						
							| 84 | 82 83 | eqtrdi |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> -e R = -oo ) | 
						
							| 85 | 84 | oveq2d |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( S +e -e R ) = ( S +e -oo ) ) | 
						
							| 86 | 85 | eqeq1d |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( ( S +e -e R ) = -oo <-> ( S +e -oo ) = -oo ) ) | 
						
							| 87 | 80 86 | sylibrd |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( S =/= +oo -> ( S +e -e R ) = -oo ) ) | 
						
							| 88 | 87 | necon1d |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( ( S +e -e R ) =/= -oo -> S = +oo ) ) | 
						
							| 89 | 76 88 | mpd |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> S = +oo ) | 
						
							| 90 | 68 89 | breqtrrd |  |-  ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( Q D x ) < S ) | 
						
							| 91 |  | psmetge0 |  |-  ( ( D e. ( PsMet ` X ) /\ P e. X /\ x e. X ) -> 0 <_ ( P D x ) ) | 
						
							| 92 | 11 22 10 91 | syl3anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> 0 <_ ( P D x ) ) | 
						
							| 93 | 70 24 18 92 28 | xrlelttrd |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> 0 < R ) | 
						
							| 94 | 70 18 93 | xrltled |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> 0 <_ R ) | 
						
							| 95 |  | ge0nemnf |  |-  ( ( R e. RR* /\ 0 <_ R ) -> R =/= -oo ) | 
						
							| 96 | 18 94 95 | syl2anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> R =/= -oo ) | 
						
							| 97 | 18 96 | jca |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( R e. RR* /\ R =/= -oo ) ) | 
						
							| 98 |  | xrnemnf |  |-  ( ( R e. RR* /\ R =/= -oo ) <-> ( R e. RR \/ R = +oo ) ) | 
						
							| 99 | 97 98 | sylib |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( R e. RR \/ R = +oo ) ) | 
						
							| 100 | 44 90 99 | mpjaodan |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( Q D x ) < S ) | 
						
							| 101 |  | elblps |  |-  ( ( D e. ( PsMet ` X ) /\ Q e. X /\ S e. RR* ) -> ( x e. ( Q ( ball ` D ) S ) <-> ( x e. X /\ ( Q D x ) < S ) ) ) | 
						
							| 102 | 11 12 34 101 | syl3anc |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( x e. ( Q ( ball ` D ) S ) <-> ( x e. X /\ ( Q D x ) < S ) ) ) | 
						
							| 103 | 10 100 102 | mpbir2and |  |-  ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> x e. ( Q ( ball ` D ) S ) ) | 
						
							| 104 | 103 | ex |  |-  ( ph -> ( x e. ( P ( ball ` D ) R ) -> x e. ( Q ( ball ` D ) S ) ) ) | 
						
							| 105 | 104 | ssrdv |  |-  ( ph -> ( P ( ball ` D ) R ) C_ ( Q ( ball ` D ) S ) ) |