Metamath Proof Explorer
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014)
|
|
Ref |
Expression |
|
Hypotheses |
xchnxbir.1 |
|- ( -. ph <-> ps ) |
|
|
xchnxbir.2 |
|- ( ch <-> ph ) |
|
Assertion |
xchnxbir |
|- ( -. ch <-> ps ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xchnxbir.1 |
|- ( -. ph <-> ps ) |
| 2 |
|
xchnxbir.2 |
|- ( ch <-> ph ) |
| 3 |
2
|
bicomi |
|- ( ph <-> ch ) |
| 4 |
1 3
|
xchnxbi |
|- ( -. ch <-> ps ) |