| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							xdivval | 
							 |-  ( ( A e. RR* /\ C e. RR /\ C =/= 0 ) -> ( A /e C ) = ( iota_ x e. RR* ( C *e x ) = A ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							3expb | 
							 |-  ( ( A e. RR* /\ ( C e. RR /\ C =/= 0 ) ) -> ( A /e C ) = ( iota_ x e. RR* ( C *e x ) = A ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							3adant2 | 
							 |-  ( ( A e. RR* /\ B e. RR* /\ ( C e. RR /\ C =/= 0 ) ) -> ( A /e C ) = ( iota_ x e. RR* ( C *e x ) = A ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							eqeq1d | 
							 |-  ( ( A e. RR* /\ B e. RR* /\ ( C e. RR /\ C =/= 0 ) ) -> ( ( A /e C ) = B <-> ( iota_ x e. RR* ( C *e x ) = A ) = B ) )  | 
						
						
							| 5 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( A e. RR* /\ B e. RR* /\ ( C e. RR /\ C =/= 0 ) ) -> B e. RR* )  | 
						
						
							| 6 | 
							
								
							 | 
							xreceu | 
							 |-  ( ( A e. RR* /\ C e. RR /\ C =/= 0 ) -> E! x e. RR* ( C *e x ) = A )  | 
						
						
							| 7 | 
							
								6
							 | 
							3expb | 
							 |-  ( ( A e. RR* /\ ( C e. RR /\ C =/= 0 ) ) -> E! x e. RR* ( C *e x ) = A )  | 
						
						
							| 8 | 
							
								7
							 | 
							3adant2 | 
							 |-  ( ( A e. RR* /\ B e. RR* /\ ( C e. RR /\ C =/= 0 ) ) -> E! x e. RR* ( C *e x ) = A )  | 
						
						
							| 9 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = B -> ( C *e x ) = ( C *e B ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							eqeq1d | 
							 |-  ( x = B -> ( ( C *e x ) = A <-> ( C *e B ) = A ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							riota2 | 
							 |-  ( ( B e. RR* /\ E! x e. RR* ( C *e x ) = A ) -> ( ( C *e B ) = A <-> ( iota_ x e. RR* ( C *e x ) = A ) = B ) )  | 
						
						
							| 12 | 
							
								5 8 11
							 | 
							syl2anc | 
							 |-  ( ( A e. RR* /\ B e. RR* /\ ( C e. RR /\ C =/= 0 ) ) -> ( ( C *e B ) = A <-> ( iota_ x e. RR* ( C *e x ) = A ) = B ) )  | 
						
						
							| 13 | 
							
								4 12
							 | 
							bitr4d | 
							 |-  ( ( A e. RR* /\ B e. RR* /\ ( C e. RR /\ C =/= 0 ) ) -> ( ( A /e C ) = B <-> ( C *e B ) = A ) )  |