| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2 |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> B e. RR ) |
| 2 |
1
|
rexrd |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> B e. RR* ) |
| 3 |
|
simp1 |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> A e. RR* ) |
| 4 |
|
1xr |
|- 1 e. RR* |
| 5 |
4
|
a1i |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> 1 e. RR* ) |
| 6 |
|
simp3 |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> B =/= 0 ) |
| 7 |
5 1 6
|
xdivcld |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( 1 /e B ) e. RR* ) |
| 8 |
3 7
|
xmulcld |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( A *e ( 1 /e B ) ) e. RR* ) |
| 9 |
|
xmulcom |
|- ( ( B e. RR* /\ ( A *e ( 1 /e B ) ) e. RR* ) -> ( B *e ( A *e ( 1 /e B ) ) ) = ( ( A *e ( 1 /e B ) ) *e B ) ) |
| 10 |
2 8 9
|
syl2anc |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( B *e ( A *e ( 1 /e B ) ) ) = ( ( A *e ( 1 /e B ) ) *e B ) ) |
| 11 |
|
xmulass |
|- ( ( A e. RR* /\ ( 1 /e B ) e. RR* /\ B e. RR* ) -> ( ( A *e ( 1 /e B ) ) *e B ) = ( A *e ( ( 1 /e B ) *e B ) ) ) |
| 12 |
3 7 2 11
|
syl3anc |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( ( A *e ( 1 /e B ) ) *e B ) = ( A *e ( ( 1 /e B ) *e B ) ) ) |
| 13 |
|
xmulcom |
|- ( ( ( 1 /e B ) e. RR* /\ B e. RR* ) -> ( ( 1 /e B ) *e B ) = ( B *e ( 1 /e B ) ) ) |
| 14 |
7 2 13
|
syl2anc |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( ( 1 /e B ) *e B ) = ( B *e ( 1 /e B ) ) ) |
| 15 |
|
eqid |
|- ( 1 /e B ) = ( 1 /e B ) |
| 16 |
|
xdivmul |
|- ( ( 1 e. RR* /\ ( 1 /e B ) e. RR* /\ ( B e. RR /\ B =/= 0 ) ) -> ( ( 1 /e B ) = ( 1 /e B ) <-> ( B *e ( 1 /e B ) ) = 1 ) ) |
| 17 |
5 7 1 6 16
|
syl112anc |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( ( 1 /e B ) = ( 1 /e B ) <-> ( B *e ( 1 /e B ) ) = 1 ) ) |
| 18 |
15 17
|
mpbii |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( B *e ( 1 /e B ) ) = 1 ) |
| 19 |
14 18
|
eqtrd |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( ( 1 /e B ) *e B ) = 1 ) |
| 20 |
19
|
oveq2d |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( A *e ( ( 1 /e B ) *e B ) ) = ( A *e 1 ) ) |
| 21 |
10 12 20
|
3eqtrd |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( B *e ( A *e ( 1 /e B ) ) ) = ( A *e 1 ) ) |
| 22 |
|
xmulrid |
|- ( A e. RR* -> ( A *e 1 ) = A ) |
| 23 |
3 22
|
syl |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( A *e 1 ) = A ) |
| 24 |
21 23
|
eqtrd |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( B *e ( A *e ( 1 /e B ) ) ) = A ) |
| 25 |
|
xdivmul |
|- ( ( A e. RR* /\ ( A *e ( 1 /e B ) ) e. RR* /\ ( B e. RR /\ B =/= 0 ) ) -> ( ( A /e B ) = ( A *e ( 1 /e B ) ) <-> ( B *e ( A *e ( 1 /e B ) ) ) = A ) ) |
| 26 |
3 8 1 6 25
|
syl112anc |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( ( A /e B ) = ( A *e ( 1 /e B ) ) <-> ( B *e ( A *e ( 1 /e B ) ) ) = A ) ) |
| 27 |
24 26
|
mpbird |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( A /e B ) = ( A *e ( 1 /e B ) ) ) |