| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eldifsn | 
							 |-  ( B e. ( RR \ { 0 } ) <-> ( B e. RR /\ B =/= 0 ) ) | 
						
						
							| 2 | 
							
								
							 | 
							simpl | 
							 |-  ( ( y = A /\ x e. RR* ) -> y = A )  | 
						
						
							| 3 | 
							
								2
							 | 
							eqeq2d | 
							 |-  ( ( y = A /\ x e. RR* ) -> ( ( z *e x ) = y <-> ( z *e x ) = A ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							riotabidva | 
							 |-  ( y = A -> ( iota_ x e. RR* ( z *e x ) = y ) = ( iota_ x e. RR* ( z *e x ) = A ) )  | 
						
						
							| 5 | 
							
								
							 | 
							simpl | 
							 |-  ( ( z = B /\ x e. RR* ) -> z = B )  | 
						
						
							| 6 | 
							
								5
							 | 
							oveq1d | 
							 |-  ( ( z = B /\ x e. RR* ) -> ( z *e x ) = ( B *e x ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							eqeq1d | 
							 |-  ( ( z = B /\ x e. RR* ) -> ( ( z *e x ) = A <-> ( B *e x ) = A ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							riotabidva | 
							 |-  ( z = B -> ( iota_ x e. RR* ( z *e x ) = A ) = ( iota_ x e. RR* ( B *e x ) = A ) )  | 
						
						
							| 9 | 
							
								
							 | 
							df-xdiv | 
							 |-  /e = ( y e. RR* , z e. ( RR \ { 0 } ) |-> ( iota_ x e. RR* ( z *e x ) = y ) ) | 
						
						
							| 10 | 
							
								
							 | 
							riotaex | 
							 |-  ( iota_ x e. RR* ( B *e x ) = A ) e. _V  | 
						
						
							| 11 | 
							
								4 8 9 10
							 | 
							ovmpo | 
							 |-  ( ( A e. RR* /\ B e. ( RR \ { 0 } ) ) -> ( A /e B ) = ( iota_ x e. RR* ( B *e x ) = A ) ) | 
						
						
							| 12 | 
							
								1 11
							 | 
							sylan2br | 
							 |-  ( ( A e. RR* /\ ( B e. RR /\ B =/= 0 ) ) -> ( A /e B ) = ( iota_ x e. RR* ( B *e x ) = A ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							3impb | 
							 |-  ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( A /e B ) = ( iota_ x e. RR* ( B *e x ) = A ) )  |