Step |
Hyp |
Ref |
Expression |
1 |
|
xkofvcn.1 |
|- X = U. R |
2 |
|
xkofvcn.2 |
|- F = ( f e. ( R Cn S ) , x e. X |-> ( f ` x ) ) |
3 |
|
nllytop |
|- ( R e. N-Locally Comp -> R e. Top ) |
4 |
|
eqid |
|- ( S ^ko R ) = ( S ^ko R ) |
5 |
4
|
xkotopon |
|- ( ( R e. Top /\ S e. Top ) -> ( S ^ko R ) e. ( TopOn ` ( R Cn S ) ) ) |
6 |
3 5
|
sylan |
|- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( S ^ko R ) e. ( TopOn ` ( R Cn S ) ) ) |
7 |
3
|
adantr |
|- ( ( R e. N-Locally Comp /\ S e. Top ) -> R e. Top ) |
8 |
1
|
toptopon |
|- ( R e. Top <-> R e. ( TopOn ` X ) ) |
9 |
7 8
|
sylib |
|- ( ( R e. N-Locally Comp /\ S e. Top ) -> R e. ( TopOn ` X ) ) |
10 |
6 9
|
cnmpt1st |
|- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( f e. ( R Cn S ) , x e. X |-> f ) e. ( ( ( S ^ko R ) tX R ) Cn ( S ^ko R ) ) ) |
11 |
6 9
|
cnmpt2nd |
|- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( f e. ( R Cn S ) , x e. X |-> x ) e. ( ( ( S ^ko R ) tX R ) Cn R ) ) |
12 |
|
1on |
|- 1o e. On |
13 |
|
distopon |
|- ( 1o e. On -> ~P 1o e. ( TopOn ` 1o ) ) |
14 |
12 13
|
mp1i |
|- ( ( R e. N-Locally Comp /\ S e. Top ) -> ~P 1o e. ( TopOn ` 1o ) ) |
15 |
|
xkoccn |
|- ( ( ~P 1o e. ( TopOn ` 1o ) /\ R e. ( TopOn ` X ) ) -> ( y e. X |-> ( 1o X. { y } ) ) e. ( R Cn ( R ^ko ~P 1o ) ) ) |
16 |
14 9 15
|
syl2anc |
|- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( y e. X |-> ( 1o X. { y } ) ) e. ( R Cn ( R ^ko ~P 1o ) ) ) |
17 |
|
sneq |
|- ( y = x -> { y } = { x } ) |
18 |
17
|
xpeq2d |
|- ( y = x -> ( 1o X. { y } ) = ( 1o X. { x } ) ) |
19 |
6 9 11 9 16 18
|
cnmpt21 |
|- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( f e. ( R Cn S ) , x e. X |-> ( 1o X. { x } ) ) e. ( ( ( S ^ko R ) tX R ) Cn ( R ^ko ~P 1o ) ) ) |
20 |
|
distop |
|- ( 1o e. On -> ~P 1o e. Top ) |
21 |
12 20
|
mp1i |
|- ( ( R e. N-Locally Comp /\ S e. Top ) -> ~P 1o e. Top ) |
22 |
|
eqid |
|- ( R ^ko ~P 1o ) = ( R ^ko ~P 1o ) |
23 |
22
|
xkotopon |
|- ( ( ~P 1o e. Top /\ R e. Top ) -> ( R ^ko ~P 1o ) e. ( TopOn ` ( ~P 1o Cn R ) ) ) |
24 |
21 7 23
|
syl2anc |
|- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( R ^ko ~P 1o ) e. ( TopOn ` ( ~P 1o Cn R ) ) ) |
25 |
|
simpl |
|- ( ( R e. N-Locally Comp /\ S e. Top ) -> R e. N-Locally Comp ) |
26 |
|
simpr |
|- ( ( R e. N-Locally Comp /\ S e. Top ) -> S e. Top ) |
27 |
|
eqid |
|- ( g e. ( R Cn S ) , h e. ( ~P 1o Cn R ) |-> ( g o. h ) ) = ( g e. ( R Cn S ) , h e. ( ~P 1o Cn R ) |-> ( g o. h ) ) |
28 |
27
|
xkococn |
|- ( ( ~P 1o e. Top /\ R e. N-Locally Comp /\ S e. Top ) -> ( g e. ( R Cn S ) , h e. ( ~P 1o Cn R ) |-> ( g o. h ) ) e. ( ( ( S ^ko R ) tX ( R ^ko ~P 1o ) ) Cn ( S ^ko ~P 1o ) ) ) |
29 |
21 25 26 28
|
syl3anc |
|- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( g e. ( R Cn S ) , h e. ( ~P 1o Cn R ) |-> ( g o. h ) ) e. ( ( ( S ^ko R ) tX ( R ^ko ~P 1o ) ) Cn ( S ^ko ~P 1o ) ) ) |
30 |
|
coeq1 |
|- ( g = f -> ( g o. h ) = ( f o. h ) ) |
31 |
|
coeq2 |
|- ( h = ( 1o X. { x } ) -> ( f o. h ) = ( f o. ( 1o X. { x } ) ) ) |
32 |
30 31
|
sylan9eq |
|- ( ( g = f /\ h = ( 1o X. { x } ) ) -> ( g o. h ) = ( f o. ( 1o X. { x } ) ) ) |
33 |
6 9 10 19 6 24 29 32
|
cnmpt22 |
|- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( f e. ( R Cn S ) , x e. X |-> ( f o. ( 1o X. { x } ) ) ) e. ( ( ( S ^ko R ) tX R ) Cn ( S ^ko ~P 1o ) ) ) |
34 |
|
eqid |
|- ( S ^ko ~P 1o ) = ( S ^ko ~P 1o ) |
35 |
34
|
xkotopon |
|- ( ( ~P 1o e. Top /\ S e. Top ) -> ( S ^ko ~P 1o ) e. ( TopOn ` ( ~P 1o Cn S ) ) ) |
36 |
21 26 35
|
syl2anc |
|- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( S ^ko ~P 1o ) e. ( TopOn ` ( ~P 1o Cn S ) ) ) |
37 |
|
0lt1o |
|- (/) e. 1o |
38 |
37
|
a1i |
|- ( ( R e. N-Locally Comp /\ S e. Top ) -> (/) e. 1o ) |
39 |
|
unipw |
|- U. ~P 1o = 1o |
40 |
39
|
eqcomi |
|- 1o = U. ~P 1o |
41 |
40
|
xkopjcn |
|- ( ( ~P 1o e. Top /\ S e. Top /\ (/) e. 1o ) -> ( g e. ( ~P 1o Cn S ) |-> ( g ` (/) ) ) e. ( ( S ^ko ~P 1o ) Cn S ) ) |
42 |
21 26 38 41
|
syl3anc |
|- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( g e. ( ~P 1o Cn S ) |-> ( g ` (/) ) ) e. ( ( S ^ko ~P 1o ) Cn S ) ) |
43 |
|
fveq1 |
|- ( g = ( f o. ( 1o X. { x } ) ) -> ( g ` (/) ) = ( ( f o. ( 1o X. { x } ) ) ` (/) ) ) |
44 |
|
vex |
|- x e. _V |
45 |
44
|
fconst |
|- ( 1o X. { x } ) : 1o --> { x } |
46 |
|
fvco3 |
|- ( ( ( 1o X. { x } ) : 1o --> { x } /\ (/) e. 1o ) -> ( ( f o. ( 1o X. { x } ) ) ` (/) ) = ( f ` ( ( 1o X. { x } ) ` (/) ) ) ) |
47 |
45 37 46
|
mp2an |
|- ( ( f o. ( 1o X. { x } ) ) ` (/) ) = ( f ` ( ( 1o X. { x } ) ` (/) ) ) |
48 |
44
|
fvconst2 |
|- ( (/) e. 1o -> ( ( 1o X. { x } ) ` (/) ) = x ) |
49 |
37 48
|
ax-mp |
|- ( ( 1o X. { x } ) ` (/) ) = x |
50 |
49
|
fveq2i |
|- ( f ` ( ( 1o X. { x } ) ` (/) ) ) = ( f ` x ) |
51 |
47 50
|
eqtri |
|- ( ( f o. ( 1o X. { x } ) ) ` (/) ) = ( f ` x ) |
52 |
43 51
|
eqtrdi |
|- ( g = ( f o. ( 1o X. { x } ) ) -> ( g ` (/) ) = ( f ` x ) ) |
53 |
6 9 33 36 42 52
|
cnmpt21 |
|- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( f e. ( R Cn S ) , x e. X |-> ( f ` x ) ) e. ( ( ( S ^ko R ) tX R ) Cn S ) ) |
54 |
2 53
|
eqeltrid |
|- ( ( R e. N-Locally Comp /\ S e. Top ) -> F e. ( ( ( S ^ko R ) tX R ) Cn S ) ) |