Step |
Hyp |
Ref |
Expression |
1 |
|
xkoval.x |
|- X = U. R |
2 |
|
xkoval.k |
|- K = { x e. ~P X | ( R |`t x ) e. Comp } |
3 |
|
xkoval.t |
|- T = ( k e. K , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) |
4 |
|
simpr |
|- ( ( s = S /\ r = R ) -> r = R ) |
5 |
4
|
unieqd |
|- ( ( s = S /\ r = R ) -> U. r = U. R ) |
6 |
5 1
|
eqtr4di |
|- ( ( s = S /\ r = R ) -> U. r = X ) |
7 |
6
|
pweqd |
|- ( ( s = S /\ r = R ) -> ~P U. r = ~P X ) |
8 |
4
|
oveq1d |
|- ( ( s = S /\ r = R ) -> ( r |`t x ) = ( R |`t x ) ) |
9 |
8
|
eleq1d |
|- ( ( s = S /\ r = R ) -> ( ( r |`t x ) e. Comp <-> ( R |`t x ) e. Comp ) ) |
10 |
7 9
|
rabeqbidv |
|- ( ( s = S /\ r = R ) -> { x e. ~P U. r | ( r |`t x ) e. Comp } = { x e. ~P X | ( R |`t x ) e. Comp } ) |
11 |
10 2
|
eqtr4di |
|- ( ( s = S /\ r = R ) -> { x e. ~P U. r | ( r |`t x ) e. Comp } = K ) |
12 |
|
simpl |
|- ( ( s = S /\ r = R ) -> s = S ) |
13 |
4 12
|
oveq12d |
|- ( ( s = S /\ r = R ) -> ( r Cn s ) = ( R Cn S ) ) |
14 |
13
|
rabeqdv |
|- ( ( s = S /\ r = R ) -> { f e. ( r Cn s ) | ( f " k ) C_ v } = { f e. ( R Cn S ) | ( f " k ) C_ v } ) |
15 |
11 12 14
|
mpoeq123dv |
|- ( ( s = S /\ r = R ) -> ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) = ( k e. K , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) ) |
16 |
15 3
|
eqtr4di |
|- ( ( s = S /\ r = R ) -> ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) = T ) |
17 |
16
|
rneqd |
|- ( ( s = S /\ r = R ) -> ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) = ran T ) |
18 |
17
|
fveq2d |
|- ( ( s = S /\ r = R ) -> ( fi ` ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) ) = ( fi ` ran T ) ) |
19 |
18
|
fveq2d |
|- ( ( s = S /\ r = R ) -> ( topGen ` ( fi ` ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) ) ) = ( topGen ` ( fi ` ran T ) ) ) |
20 |
|
df-xko |
|- ^ko = ( s e. Top , r e. Top |-> ( topGen ` ( fi ` ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) ) ) ) |
21 |
|
fvex |
|- ( topGen ` ( fi ` ran T ) ) e. _V |
22 |
19 20 21
|
ovmpoa |
|- ( ( S e. Top /\ R e. Top ) -> ( S ^ko R ) = ( topGen ` ( fi ` ran T ) ) ) |
23 |
22
|
ancoms |
|- ( ( R e. Top /\ S e. Top ) -> ( S ^ko R ) = ( topGen ` ( fi ` ran T ) ) ) |