Step |
Hyp |
Ref |
Expression |
1 |
|
simplrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> A e. RR ) |
2 |
|
simpr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> B e. RR ) |
3 |
|
simplrl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> C e. RR ) |
4 |
|
simpllr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> A <_ B ) |
5 |
1 2 3 4
|
leadd1dd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> ( A + C ) <_ ( B + C ) ) |
6 |
1 3
|
rexaddd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> ( A +e C ) = ( A + C ) ) |
7 |
2 3
|
rexaddd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> ( B +e C ) = ( B + C ) ) |
8 |
5 6 7
|
3brtr4d |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> ( A +e C ) <_ ( B +e C ) ) |
9 |
|
simpl1 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> A e. RR* ) |
10 |
|
simpl3 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> C e. RR* ) |
11 |
|
xaddcl |
|- ( ( A e. RR* /\ C e. RR* ) -> ( A +e C ) e. RR* ) |
12 |
9 10 11
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( A +e C ) e. RR* ) |
13 |
12
|
ad2antrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B = +oo ) -> ( A +e C ) e. RR* ) |
14 |
|
pnfge |
|- ( ( A +e C ) e. RR* -> ( A +e C ) <_ +oo ) |
15 |
13 14
|
syl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B = +oo ) -> ( A +e C ) <_ +oo ) |
16 |
|
oveq1 |
|- ( B = +oo -> ( B +e C ) = ( +oo +e C ) ) |
17 |
|
rexr |
|- ( C e. RR -> C e. RR* ) |
18 |
|
renemnf |
|- ( C e. RR -> C =/= -oo ) |
19 |
|
xaddpnf2 |
|- ( ( C e. RR* /\ C =/= -oo ) -> ( +oo +e C ) = +oo ) |
20 |
17 18 19
|
syl2anc |
|- ( C e. RR -> ( +oo +e C ) = +oo ) |
21 |
20
|
ad2antrl |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) -> ( +oo +e C ) = +oo ) |
22 |
16 21
|
sylan9eqr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B = +oo ) -> ( B +e C ) = +oo ) |
23 |
15 22
|
breqtrrd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B = +oo ) -> ( A +e C ) <_ ( B +e C ) ) |
24 |
12
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> ( A +e C ) e. RR* ) |
25 |
24
|
xrleidd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> ( A +e C ) <_ ( A +e C ) ) |
26 |
|
simplr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> A <_ B ) |
27 |
|
simpr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> B = -oo ) |
28 |
9
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> A e. RR* ) |
29 |
|
mnfle |
|- ( A e. RR* -> -oo <_ A ) |
30 |
28 29
|
syl |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> -oo <_ A ) |
31 |
27 30
|
eqbrtrd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> B <_ A ) |
32 |
|
simpl2 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> B e. RR* ) |
33 |
|
xrletri3 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
34 |
9 32 33
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
35 |
34
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
36 |
26 31 35
|
mpbir2and |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> A = B ) |
37 |
36
|
oveq1d |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> ( A +e C ) = ( B +e C ) ) |
38 |
25 37
|
breqtrd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> ( A +e C ) <_ ( B +e C ) ) |
39 |
38
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B = -oo ) -> ( A +e C ) <_ ( B +e C ) ) |
40 |
|
elxr |
|- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
41 |
32 40
|
sylib |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
42 |
41
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
43 |
8 23 39 42
|
mpjao3dan |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) -> ( A +e C ) <_ ( B +e C ) ) |
44 |
43
|
anassrs |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) /\ A e. RR ) -> ( A +e C ) <_ ( B +e C ) ) |
45 |
12
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> ( A +e C ) e. RR* ) |
46 |
45
|
xrleidd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> ( A +e C ) <_ ( A +e C ) ) |
47 |
|
simplr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> A <_ B ) |
48 |
|
pnfge |
|- ( B e. RR* -> B <_ +oo ) |
49 |
32 48
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> B <_ +oo ) |
50 |
49
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> B <_ +oo ) |
51 |
|
simpr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> A = +oo ) |
52 |
50 51
|
breqtrrd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> B <_ A ) |
53 |
34
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
54 |
47 52 53
|
mpbir2and |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> A = B ) |
55 |
54
|
oveq1d |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> ( A +e C ) = ( B +e C ) ) |
56 |
46 55
|
breqtrd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> ( A +e C ) <_ ( B +e C ) ) |
57 |
56
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) /\ A = +oo ) -> ( A +e C ) <_ ( B +e C ) ) |
58 |
|
oveq1 |
|- ( A = -oo -> ( A +e C ) = ( -oo +e C ) ) |
59 |
|
renepnf |
|- ( C e. RR -> C =/= +oo ) |
60 |
|
xaddmnf2 |
|- ( ( C e. RR* /\ C =/= +oo ) -> ( -oo +e C ) = -oo ) |
61 |
17 59 60
|
syl2anc |
|- ( C e. RR -> ( -oo +e C ) = -oo ) |
62 |
61
|
adantl |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) -> ( -oo +e C ) = -oo ) |
63 |
58 62
|
sylan9eqr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) /\ A = -oo ) -> ( A +e C ) = -oo ) |
64 |
|
xaddcl |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B +e C ) e. RR* ) |
65 |
32 10 64
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( B +e C ) e. RR* ) |
66 |
65
|
ad2antrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) /\ A = -oo ) -> ( B +e C ) e. RR* ) |
67 |
|
mnfle |
|- ( ( B +e C ) e. RR* -> -oo <_ ( B +e C ) ) |
68 |
66 67
|
syl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) /\ A = -oo ) -> -oo <_ ( B +e C ) ) |
69 |
63 68
|
eqbrtrd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) /\ A = -oo ) -> ( A +e C ) <_ ( B +e C ) ) |
70 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
71 |
9 70
|
sylib |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
72 |
71
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
73 |
44 57 69 72
|
mpjao3dan |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) -> ( A +e C ) <_ ( B +e C ) ) |
74 |
38
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B = -oo ) -> ( A +e C ) <_ ( B +e C ) ) |
75 |
12
|
ad2antrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> ( A +e C ) e. RR* ) |
76 |
75 14
|
syl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> ( A +e C ) <_ +oo ) |
77 |
|
simplr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> C = +oo ) |
78 |
77
|
oveq2d |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> ( B +e C ) = ( B +e +oo ) ) |
79 |
32
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) -> B e. RR* ) |
80 |
|
xaddpnf1 |
|- ( ( B e. RR* /\ B =/= -oo ) -> ( B +e +oo ) = +oo ) |
81 |
79 80
|
sylan |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> ( B +e +oo ) = +oo ) |
82 |
78 81
|
eqtrd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> ( B +e C ) = +oo ) |
83 |
76 82
|
breqtrrd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> ( A +e C ) <_ ( B +e C ) ) |
84 |
74 83
|
pm2.61dane |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) -> ( A +e C ) <_ ( B +e C ) ) |
85 |
56
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A = +oo ) -> ( A +e C ) <_ ( B +e C ) ) |
86 |
|
simplr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> C = -oo ) |
87 |
86
|
oveq2d |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> ( A +e C ) = ( A +e -oo ) ) |
88 |
9
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) -> A e. RR* ) |
89 |
|
xaddmnf1 |
|- ( ( A e. RR* /\ A =/= +oo ) -> ( A +e -oo ) = -oo ) |
90 |
88 89
|
sylan |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> ( A +e -oo ) = -oo ) |
91 |
87 90
|
eqtrd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> ( A +e C ) = -oo ) |
92 |
65
|
ad2antrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> ( B +e C ) e. RR* ) |
93 |
92 67
|
syl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> -oo <_ ( B +e C ) ) |
94 |
91 93
|
eqbrtrd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> ( A +e C ) <_ ( B +e C ) ) |
95 |
85 94
|
pm2.61dane |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) -> ( A +e C ) <_ ( B +e C ) ) |
96 |
|
elxr |
|- ( C e. RR* <-> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
97 |
10 96
|
sylib |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
98 |
73 84 95 97
|
mpjao3dan |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( A +e C ) <_ ( B +e C ) ) |