| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> A e. RR ) |
| 2 |
|
simpr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> B e. RR ) |
| 3 |
|
simplrl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> C e. RR ) |
| 4 |
|
simpllr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> A <_ B ) |
| 5 |
1 2 3 4
|
leadd1dd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> ( A + C ) <_ ( B + C ) ) |
| 6 |
1 3
|
rexaddd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> ( A +e C ) = ( A + C ) ) |
| 7 |
2 3
|
rexaddd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> ( B +e C ) = ( B + C ) ) |
| 8 |
5 6 7
|
3brtr4d |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> ( A +e C ) <_ ( B +e C ) ) |
| 9 |
|
simpl1 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> A e. RR* ) |
| 10 |
|
simpl3 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> C e. RR* ) |
| 11 |
|
xaddcl |
|- ( ( A e. RR* /\ C e. RR* ) -> ( A +e C ) e. RR* ) |
| 12 |
9 10 11
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( A +e C ) e. RR* ) |
| 13 |
12
|
ad2antrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B = +oo ) -> ( A +e C ) e. RR* ) |
| 14 |
|
pnfge |
|- ( ( A +e C ) e. RR* -> ( A +e C ) <_ +oo ) |
| 15 |
13 14
|
syl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B = +oo ) -> ( A +e C ) <_ +oo ) |
| 16 |
|
oveq1 |
|- ( B = +oo -> ( B +e C ) = ( +oo +e C ) ) |
| 17 |
|
rexr |
|- ( C e. RR -> C e. RR* ) |
| 18 |
|
renemnf |
|- ( C e. RR -> C =/= -oo ) |
| 19 |
|
xaddpnf2 |
|- ( ( C e. RR* /\ C =/= -oo ) -> ( +oo +e C ) = +oo ) |
| 20 |
17 18 19
|
syl2anc |
|- ( C e. RR -> ( +oo +e C ) = +oo ) |
| 21 |
20
|
ad2antrl |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) -> ( +oo +e C ) = +oo ) |
| 22 |
16 21
|
sylan9eqr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B = +oo ) -> ( B +e C ) = +oo ) |
| 23 |
15 22
|
breqtrrd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B = +oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 24 |
12
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> ( A +e C ) e. RR* ) |
| 25 |
24
|
xrleidd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> ( A +e C ) <_ ( A +e C ) ) |
| 26 |
|
simplr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> A <_ B ) |
| 27 |
|
simpr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> B = -oo ) |
| 28 |
9
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> A e. RR* ) |
| 29 |
|
mnfle |
|- ( A e. RR* -> -oo <_ A ) |
| 30 |
28 29
|
syl |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> -oo <_ A ) |
| 31 |
27 30
|
eqbrtrd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> B <_ A ) |
| 32 |
|
simpl2 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> B e. RR* ) |
| 33 |
|
xrletri3 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
| 34 |
9 32 33
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
| 35 |
34
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
| 36 |
26 31 35
|
mpbir2and |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> A = B ) |
| 37 |
36
|
oveq1d |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> ( A +e C ) = ( B +e C ) ) |
| 38 |
25 37
|
breqtrd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 39 |
38
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B = -oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 40 |
|
elxr |
|- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 41 |
32 40
|
sylib |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 42 |
41
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 43 |
8 23 39 42
|
mpjao3dan |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) -> ( A +e C ) <_ ( B +e C ) ) |
| 44 |
43
|
anassrs |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) /\ A e. RR ) -> ( A +e C ) <_ ( B +e C ) ) |
| 45 |
12
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> ( A +e C ) e. RR* ) |
| 46 |
45
|
xrleidd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> ( A +e C ) <_ ( A +e C ) ) |
| 47 |
|
simplr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> A <_ B ) |
| 48 |
|
pnfge |
|- ( B e. RR* -> B <_ +oo ) |
| 49 |
32 48
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> B <_ +oo ) |
| 50 |
49
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> B <_ +oo ) |
| 51 |
|
simpr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> A = +oo ) |
| 52 |
50 51
|
breqtrrd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> B <_ A ) |
| 53 |
34
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
| 54 |
47 52 53
|
mpbir2and |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> A = B ) |
| 55 |
54
|
oveq1d |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> ( A +e C ) = ( B +e C ) ) |
| 56 |
46 55
|
breqtrd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 57 |
56
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) /\ A = +oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 58 |
|
oveq1 |
|- ( A = -oo -> ( A +e C ) = ( -oo +e C ) ) |
| 59 |
|
renepnf |
|- ( C e. RR -> C =/= +oo ) |
| 60 |
|
xaddmnf2 |
|- ( ( C e. RR* /\ C =/= +oo ) -> ( -oo +e C ) = -oo ) |
| 61 |
17 59 60
|
syl2anc |
|- ( C e. RR -> ( -oo +e C ) = -oo ) |
| 62 |
61
|
adantl |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) -> ( -oo +e C ) = -oo ) |
| 63 |
58 62
|
sylan9eqr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) /\ A = -oo ) -> ( A +e C ) = -oo ) |
| 64 |
|
xaddcl |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B +e C ) e. RR* ) |
| 65 |
32 10 64
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( B +e C ) e. RR* ) |
| 66 |
65
|
ad2antrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) /\ A = -oo ) -> ( B +e C ) e. RR* ) |
| 67 |
|
mnfle |
|- ( ( B +e C ) e. RR* -> -oo <_ ( B +e C ) ) |
| 68 |
66 67
|
syl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) /\ A = -oo ) -> -oo <_ ( B +e C ) ) |
| 69 |
63 68
|
eqbrtrd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) /\ A = -oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 70 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 71 |
9 70
|
sylib |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 72 |
71
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 73 |
44 57 69 72
|
mpjao3dan |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) -> ( A +e C ) <_ ( B +e C ) ) |
| 74 |
38
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B = -oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 75 |
12
|
ad2antrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> ( A +e C ) e. RR* ) |
| 76 |
75 14
|
syl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> ( A +e C ) <_ +oo ) |
| 77 |
|
simplr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> C = +oo ) |
| 78 |
77
|
oveq2d |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> ( B +e C ) = ( B +e +oo ) ) |
| 79 |
32
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) -> B e. RR* ) |
| 80 |
|
xaddpnf1 |
|- ( ( B e. RR* /\ B =/= -oo ) -> ( B +e +oo ) = +oo ) |
| 81 |
79 80
|
sylan |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> ( B +e +oo ) = +oo ) |
| 82 |
78 81
|
eqtrd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> ( B +e C ) = +oo ) |
| 83 |
76 82
|
breqtrrd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 84 |
74 83
|
pm2.61dane |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 85 |
56
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A = +oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 86 |
|
simplr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> C = -oo ) |
| 87 |
86
|
oveq2d |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> ( A +e C ) = ( A +e -oo ) ) |
| 88 |
9
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) -> A e. RR* ) |
| 89 |
|
xaddmnf1 |
|- ( ( A e. RR* /\ A =/= +oo ) -> ( A +e -oo ) = -oo ) |
| 90 |
88 89
|
sylan |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> ( A +e -oo ) = -oo ) |
| 91 |
87 90
|
eqtrd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> ( A +e C ) = -oo ) |
| 92 |
65
|
ad2antrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> ( B +e C ) e. RR* ) |
| 93 |
92 67
|
syl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> -oo <_ ( B +e C ) ) |
| 94 |
91 93
|
eqbrtrd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 95 |
85 94
|
pm2.61dane |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 96 |
|
elxr |
|- ( C e. RR* <-> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
| 97 |
10 96
|
sylib |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
| 98 |
73 84 95 97
|
mpjao3dan |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( A +e C ) <_ ( B +e C ) ) |