Description: An extended real which is less than minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | xlemnf | |- ( A e. RR* -> ( A <_ -oo <-> A = -oo ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr | |- -oo e. RR* |
|
2 | xrlenlt | |- ( ( A e. RR* /\ -oo e. RR* ) -> ( A <_ -oo <-> -. -oo < A ) ) |
|
3 | 1 2 | mpan2 | |- ( A e. RR* -> ( A <_ -oo <-> -. -oo < A ) ) |
4 | ngtmnft | |- ( A e. RR* -> ( A = -oo <-> -. -oo < A ) ) |
|
5 | 3 4 | bitr4d | |- ( A e. RR* -> ( A <_ -oo <-> A = -oo ) ) |