| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpxr |
|- ( C e. RR+ -> C e. RR* ) |
| 2 |
|
rpge0 |
|- ( C e. RR+ -> 0 <_ C ) |
| 3 |
1 2
|
jca |
|- ( C e. RR+ -> ( C e. RR* /\ 0 <_ C ) ) |
| 4 |
|
xlemul1a |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( C e. RR* /\ 0 <_ C ) ) /\ A <_ B ) -> ( A *e C ) <_ ( B *e C ) ) |
| 5 |
4
|
ex |
|- ( ( A e. RR* /\ B e. RR* /\ ( C e. RR* /\ 0 <_ C ) ) -> ( A <_ B -> ( A *e C ) <_ ( B *e C ) ) ) |
| 6 |
3 5
|
syl3an3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A <_ B -> ( A *e C ) <_ ( B *e C ) ) ) |
| 7 |
|
simp1 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> A e. RR* ) |
| 8 |
1
|
3ad2ant3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> C e. RR* ) |
| 9 |
|
xmulcl |
|- ( ( A e. RR* /\ C e. RR* ) -> ( A *e C ) e. RR* ) |
| 10 |
7 8 9
|
syl2anc |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A *e C ) e. RR* ) |
| 11 |
|
simp2 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> B e. RR* ) |
| 12 |
|
xmulcl |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B *e C ) e. RR* ) |
| 13 |
11 8 12
|
syl2anc |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( B *e C ) e. RR* ) |
| 14 |
|
rpreccl |
|- ( C e. RR+ -> ( 1 / C ) e. RR+ ) |
| 15 |
14
|
3ad2ant3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( 1 / C ) e. RR+ ) |
| 16 |
|
rpxr |
|- ( ( 1 / C ) e. RR+ -> ( 1 / C ) e. RR* ) |
| 17 |
15 16
|
syl |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( 1 / C ) e. RR* ) |
| 18 |
|
rpge0 |
|- ( ( 1 / C ) e. RR+ -> 0 <_ ( 1 / C ) ) |
| 19 |
15 18
|
syl |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> 0 <_ ( 1 / C ) ) |
| 20 |
|
xlemul1a |
|- ( ( ( ( A *e C ) e. RR* /\ ( B *e C ) e. RR* /\ ( ( 1 / C ) e. RR* /\ 0 <_ ( 1 / C ) ) ) /\ ( A *e C ) <_ ( B *e C ) ) -> ( ( A *e C ) *e ( 1 / C ) ) <_ ( ( B *e C ) *e ( 1 / C ) ) ) |
| 21 |
20
|
ex |
|- ( ( ( A *e C ) e. RR* /\ ( B *e C ) e. RR* /\ ( ( 1 / C ) e. RR* /\ 0 <_ ( 1 / C ) ) ) -> ( ( A *e C ) <_ ( B *e C ) -> ( ( A *e C ) *e ( 1 / C ) ) <_ ( ( B *e C ) *e ( 1 / C ) ) ) ) |
| 22 |
10 13 17 19 21
|
syl112anc |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( A *e C ) <_ ( B *e C ) -> ( ( A *e C ) *e ( 1 / C ) ) <_ ( ( B *e C ) *e ( 1 / C ) ) ) ) |
| 23 |
|
xmulass |
|- ( ( A e. RR* /\ C e. RR* /\ ( 1 / C ) e. RR* ) -> ( ( A *e C ) *e ( 1 / C ) ) = ( A *e ( C *e ( 1 / C ) ) ) ) |
| 24 |
7 8 17 23
|
syl3anc |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( A *e C ) *e ( 1 / C ) ) = ( A *e ( C *e ( 1 / C ) ) ) ) |
| 25 |
|
rpre |
|- ( C e. RR+ -> C e. RR ) |
| 26 |
25
|
3ad2ant3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> C e. RR ) |
| 27 |
15
|
rpred |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( 1 / C ) e. RR ) |
| 28 |
|
rexmul |
|- ( ( C e. RR /\ ( 1 / C ) e. RR ) -> ( C *e ( 1 / C ) ) = ( C x. ( 1 / C ) ) ) |
| 29 |
26 27 28
|
syl2anc |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( C *e ( 1 / C ) ) = ( C x. ( 1 / C ) ) ) |
| 30 |
26
|
recnd |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> C e. CC ) |
| 31 |
|
rpne0 |
|- ( C e. RR+ -> C =/= 0 ) |
| 32 |
31
|
3ad2ant3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> C =/= 0 ) |
| 33 |
30 32
|
recidd |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( C x. ( 1 / C ) ) = 1 ) |
| 34 |
29 33
|
eqtrd |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( C *e ( 1 / C ) ) = 1 ) |
| 35 |
34
|
oveq2d |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A *e ( C *e ( 1 / C ) ) ) = ( A *e 1 ) ) |
| 36 |
|
xmulrid |
|- ( A e. RR* -> ( A *e 1 ) = A ) |
| 37 |
7 36
|
syl |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A *e 1 ) = A ) |
| 38 |
24 35 37
|
3eqtrd |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( A *e C ) *e ( 1 / C ) ) = A ) |
| 39 |
|
xmulass |
|- ( ( B e. RR* /\ C e. RR* /\ ( 1 / C ) e. RR* ) -> ( ( B *e C ) *e ( 1 / C ) ) = ( B *e ( C *e ( 1 / C ) ) ) ) |
| 40 |
11 8 17 39
|
syl3anc |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( B *e C ) *e ( 1 / C ) ) = ( B *e ( C *e ( 1 / C ) ) ) ) |
| 41 |
34
|
oveq2d |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( B *e ( C *e ( 1 / C ) ) ) = ( B *e 1 ) ) |
| 42 |
|
xmulrid |
|- ( B e. RR* -> ( B *e 1 ) = B ) |
| 43 |
11 42
|
syl |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( B *e 1 ) = B ) |
| 44 |
40 41 43
|
3eqtrd |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( B *e C ) *e ( 1 / C ) ) = B ) |
| 45 |
38 44
|
breq12d |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( ( A *e C ) *e ( 1 / C ) ) <_ ( ( B *e C ) *e ( 1 / C ) ) <-> A <_ B ) ) |
| 46 |
22 45
|
sylibd |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( A *e C ) <_ ( B *e C ) -> A <_ B ) ) |
| 47 |
6 46
|
impbid |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A <_ B <-> ( A *e C ) <_ ( B *e C ) ) ) |