Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
|- 0 e. RR* |
2 |
|
simpr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> C e. RR* ) |
3 |
|
xrleloe |
|- ( ( 0 e. RR* /\ C e. RR* ) -> ( 0 <_ C <-> ( 0 < C \/ 0 = C ) ) ) |
4 |
1 2 3
|
sylancr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( 0 <_ C <-> ( 0 < C \/ 0 = C ) ) ) |
5 |
|
simpllr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> C e. RR* ) |
6 |
|
elxr |
|- ( C e. RR* <-> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
7 |
5 6
|
sylib |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
8 |
|
simplrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> A <_ B ) |
9 |
|
simprll |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> A e. RR ) |
10 |
|
simprlr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> B e. RR ) |
11 |
|
simprr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> C e. RR ) |
12 |
|
simplrl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> 0 < C ) |
13 |
|
lemul1 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> ( A x. C ) <_ ( B x. C ) ) ) |
14 |
9 10 11 12 13
|
syl112anc |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> ( A <_ B <-> ( A x. C ) <_ ( B x. C ) ) ) |
15 |
8 14
|
mpbid |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> ( A x. C ) <_ ( B x. C ) ) |
16 |
|
rexmul |
|- ( ( A e. RR /\ C e. RR ) -> ( A *e C ) = ( A x. C ) ) |
17 |
9 11 16
|
syl2anc |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> ( A *e C ) = ( A x. C ) ) |
18 |
|
rexmul |
|- ( ( B e. RR /\ C e. RR ) -> ( B *e C ) = ( B x. C ) ) |
19 |
10 11 18
|
syl2anc |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> ( B *e C ) = ( B x. C ) ) |
20 |
15 17 19
|
3brtr4d |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ C e. RR ) ) -> ( A *e C ) <_ ( B *e C ) ) |
21 |
20
|
expr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( C e. RR -> ( A *e C ) <_ ( B *e C ) ) ) |
22 |
|
simprl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> A e. RR ) |
23 |
|
0re |
|- 0 e. RR |
24 |
|
lttri4 |
|- ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 \/ A = 0 \/ 0 < A ) ) |
25 |
22 23 24
|
sylancl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( A < 0 \/ A = 0 \/ 0 < A ) ) |
26 |
|
simplll |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) -> A e. RR* ) |
27 |
26
|
adantr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> A e. RR* ) |
28 |
|
xmulpnf1n |
|- ( ( A e. RR* /\ A < 0 ) -> ( A *e +oo ) = -oo ) |
29 |
27 28
|
sylan |
|- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ A < 0 ) -> ( A *e +oo ) = -oo ) |
30 |
|
simpllr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) -> B e. RR* ) |
31 |
30
|
adantr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> B e. RR* ) |
32 |
31
|
adantr |
|- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ A < 0 ) -> B e. RR* ) |
33 |
|
pnfxr |
|- +oo e. RR* |
34 |
|
xmulcl |
|- ( ( B e. RR* /\ +oo e. RR* ) -> ( B *e +oo ) e. RR* ) |
35 |
32 33 34
|
sylancl |
|- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ A < 0 ) -> ( B *e +oo ) e. RR* ) |
36 |
|
mnfle |
|- ( ( B *e +oo ) e. RR* -> -oo <_ ( B *e +oo ) ) |
37 |
35 36
|
syl |
|- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ A < 0 ) -> -oo <_ ( B *e +oo ) ) |
38 |
29 37
|
eqbrtrd |
|- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ A < 0 ) -> ( A *e +oo ) <_ ( B *e +oo ) ) |
39 |
38
|
ex |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( A < 0 -> ( A *e +oo ) <_ ( B *e +oo ) ) ) |
40 |
|
oveq1 |
|- ( A = 0 -> ( A *e +oo ) = ( 0 *e +oo ) ) |
41 |
|
xmul02 |
|- ( +oo e. RR* -> ( 0 *e +oo ) = 0 ) |
42 |
33 41
|
ax-mp |
|- ( 0 *e +oo ) = 0 |
43 |
40 42
|
eqtrdi |
|- ( A = 0 -> ( A *e +oo ) = 0 ) |
44 |
43
|
adantl |
|- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ A = 0 ) -> ( A *e +oo ) = 0 ) |
45 |
|
simplrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> A <_ B ) |
46 |
|
breq1 |
|- ( A = 0 -> ( A <_ B <-> 0 <_ B ) ) |
47 |
45 46
|
syl5ibcom |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( A = 0 -> 0 <_ B ) ) |
48 |
|
simprr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> B e. RR ) |
49 |
|
leloe |
|- ( ( 0 e. RR /\ B e. RR ) -> ( 0 <_ B <-> ( 0 < B \/ 0 = B ) ) ) |
50 |
23 48 49
|
sylancr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( 0 <_ B <-> ( 0 < B \/ 0 = B ) ) ) |
51 |
47 50
|
sylibd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( A = 0 -> ( 0 < B \/ 0 = B ) ) ) |
52 |
51
|
imp |
|- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ A = 0 ) -> ( 0 < B \/ 0 = B ) ) |
53 |
|
pnfge |
|- ( 0 e. RR* -> 0 <_ +oo ) |
54 |
1 53
|
ax-mp |
|- 0 <_ +oo |
55 |
|
xmulpnf1 |
|- ( ( B e. RR* /\ 0 < B ) -> ( B *e +oo ) = +oo ) |
56 |
31 55
|
sylan |
|- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ 0 < B ) -> ( B *e +oo ) = +oo ) |
57 |
54 56
|
breqtrrid |
|- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ 0 < B ) -> 0 <_ ( B *e +oo ) ) |
58 |
|
xrleid |
|- ( 0 e. RR* -> 0 <_ 0 ) |
59 |
1 58
|
ax-mp |
|- 0 <_ 0 |
60 |
59 42
|
breqtrri |
|- 0 <_ ( 0 *e +oo ) |
61 |
|
simpr |
|- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ 0 = B ) -> 0 = B ) |
62 |
61
|
oveq1d |
|- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ 0 = B ) -> ( 0 *e +oo ) = ( B *e +oo ) ) |
63 |
60 62
|
breqtrid |
|- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ 0 = B ) -> 0 <_ ( B *e +oo ) ) |
64 |
57 63
|
jaodan |
|- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ ( 0 < B \/ 0 = B ) ) -> 0 <_ ( B *e +oo ) ) |
65 |
52 64
|
syldan |
|- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ A = 0 ) -> 0 <_ ( B *e +oo ) ) |
66 |
44 65
|
eqbrtrd |
|- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) /\ A = 0 ) -> ( A *e +oo ) <_ ( B *e +oo ) ) |
67 |
66
|
ex |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( A = 0 -> ( A *e +oo ) <_ ( B *e +oo ) ) ) |
68 |
|
pnfge |
|- ( +oo e. RR* -> +oo <_ +oo ) |
69 |
33 68
|
ax-mp |
|- +oo <_ +oo |
70 |
26
|
adantr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ 0 < A ) ) -> A e. RR* ) |
71 |
|
simprr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ 0 < A ) ) -> 0 < A ) |
72 |
|
xmulpnf1 |
|- ( ( A e. RR* /\ 0 < A ) -> ( A *e +oo ) = +oo ) |
73 |
70 71 72
|
syl2anc |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ 0 < A ) ) -> ( A *e +oo ) = +oo ) |
74 |
30
|
adantr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ 0 < A ) ) -> B e. RR* ) |
75 |
|
ltletr |
|- ( ( 0 e. RR /\ A e. RR /\ B e. RR ) -> ( ( 0 < A /\ A <_ B ) -> 0 < B ) ) |
76 |
23 75
|
mp3an1 |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 < A /\ A <_ B ) -> 0 < B ) ) |
77 |
76
|
adantl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( ( 0 < A /\ A <_ B ) -> 0 < B ) ) |
78 |
45 77
|
mpan2d |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( 0 < A -> 0 < B ) ) |
79 |
78
|
impr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ 0 < A ) ) -> 0 < B ) |
80 |
74 79 55
|
syl2anc |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ 0 < A ) ) -> ( B *e +oo ) = +oo ) |
81 |
73 80
|
breq12d |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ 0 < A ) ) -> ( ( A *e +oo ) <_ ( B *e +oo ) <-> +oo <_ +oo ) ) |
82 |
69 81
|
mpbiri |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( ( A e. RR /\ B e. RR ) /\ 0 < A ) ) -> ( A *e +oo ) <_ ( B *e +oo ) ) |
83 |
82
|
expr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( 0 < A -> ( A *e +oo ) <_ ( B *e +oo ) ) ) |
84 |
39 67 83
|
3jaod |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( ( A < 0 \/ A = 0 \/ 0 < A ) -> ( A *e +oo ) <_ ( B *e +oo ) ) ) |
85 |
25 84
|
mpd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( A *e +oo ) <_ ( B *e +oo ) ) |
86 |
|
oveq2 |
|- ( C = +oo -> ( A *e C ) = ( A *e +oo ) ) |
87 |
|
oveq2 |
|- ( C = +oo -> ( B *e C ) = ( B *e +oo ) ) |
88 |
86 87
|
breq12d |
|- ( C = +oo -> ( ( A *e C ) <_ ( B *e C ) <-> ( A *e +oo ) <_ ( B *e +oo ) ) ) |
89 |
85 88
|
syl5ibrcom |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( C = +oo -> ( A *e C ) <_ ( B *e C ) ) ) |
90 |
|
nltmnf |
|- ( 0 e. RR* -> -. 0 < -oo ) |
91 |
1 90
|
ax-mp |
|- -. 0 < -oo |
92 |
|
breq2 |
|- ( C = -oo -> ( 0 < C <-> 0 < -oo ) ) |
93 |
91 92
|
mtbiri |
|- ( C = -oo -> -. 0 < C ) |
94 |
93
|
con2i |
|- ( 0 < C -> -. C = -oo ) |
95 |
94
|
ad2antrl |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) -> -. C = -oo ) |
96 |
95
|
adantr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> -. C = -oo ) |
97 |
96
|
pm2.21d |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( C = -oo -> ( A *e C ) <_ ( B *e C ) ) ) |
98 |
21 89 97
|
3jaod |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( ( C e. RR \/ C = +oo \/ C = -oo ) -> ( A *e C ) <_ ( B *e C ) ) ) |
99 |
7 98
|
mpd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( A *e C ) <_ ( B *e C ) ) |
100 |
99
|
anassrs |
|- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A e. RR ) /\ B e. RR ) -> ( A *e C ) <_ ( B *e C ) ) |
101 |
|
xmulcl |
|- ( ( A e. RR* /\ C e. RR* ) -> ( A *e C ) e. RR* ) |
102 |
101
|
adantlr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( A *e C ) e. RR* ) |
103 |
102
|
ad2antrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = +oo ) -> ( A *e C ) e. RR* ) |
104 |
|
pnfge |
|- ( ( A *e C ) e. RR* -> ( A *e C ) <_ +oo ) |
105 |
103 104
|
syl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = +oo ) -> ( A *e C ) <_ +oo ) |
106 |
|
oveq1 |
|- ( B = +oo -> ( B *e C ) = ( +oo *e C ) ) |
107 |
|
xmulpnf2 |
|- ( ( C e. RR* /\ 0 < C ) -> ( +oo *e C ) = +oo ) |
108 |
107
|
ad2ant2lr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) -> ( +oo *e C ) = +oo ) |
109 |
106 108
|
sylan9eqr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = +oo ) -> ( B *e C ) = +oo ) |
110 |
105 109
|
breqtrrd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = +oo ) -> ( A *e C ) <_ ( B *e C ) ) |
111 |
110
|
adantlr |
|- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A e. RR ) /\ B = +oo ) -> ( A *e C ) <_ ( B *e C ) ) |
112 |
|
simplrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> A <_ B ) |
113 |
|
simpr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> B = -oo ) |
114 |
26
|
adantr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> A e. RR* ) |
115 |
|
mnfle |
|- ( A e. RR* -> -oo <_ A ) |
116 |
114 115
|
syl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> -oo <_ A ) |
117 |
113 116
|
eqbrtrd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> B <_ A ) |
118 |
|
xrletri3 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
119 |
118
|
ad3antrrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
120 |
112 117 119
|
mpbir2and |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> A = B ) |
121 |
120
|
oveq1d |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> ( A *e C ) = ( B *e C ) ) |
122 |
|
xmulcl |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B *e C ) e. RR* ) |
123 |
122
|
adantll |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( B *e C ) e. RR* ) |
124 |
123
|
ad2antrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> ( B *e C ) e. RR* ) |
125 |
|
xrleid |
|- ( ( B *e C ) e. RR* -> ( B *e C ) <_ ( B *e C ) ) |
126 |
124 125
|
syl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> ( B *e C ) <_ ( B *e C ) ) |
127 |
121 126
|
eqbrtrd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ B = -oo ) -> ( A *e C ) <_ ( B *e C ) ) |
128 |
127
|
adantlr |
|- ( ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A e. RR ) /\ B = -oo ) -> ( A *e C ) <_ ( B *e C ) ) |
129 |
|
elxr |
|- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
130 |
30 129
|
sylib |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
131 |
130
|
adantr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A e. RR ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
132 |
100 111 128 131
|
mpjao3dan |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A e. RR ) -> ( A *e C ) <_ ( B *e C ) ) |
133 |
|
simplrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> A <_ B ) |
134 |
30
|
adantr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> B e. RR* ) |
135 |
|
pnfge |
|- ( B e. RR* -> B <_ +oo ) |
136 |
134 135
|
syl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> B <_ +oo ) |
137 |
|
simpr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> A = +oo ) |
138 |
136 137
|
breqtrrd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> B <_ A ) |
139 |
118
|
ad3antrrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
140 |
133 138 139
|
mpbir2and |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> A = B ) |
141 |
140
|
oveq1d |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> ( A *e C ) = ( B *e C ) ) |
142 |
123 125
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( B *e C ) <_ ( B *e C ) ) |
143 |
142
|
ad2antrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> ( B *e C ) <_ ( B *e C ) ) |
144 |
141 143
|
eqbrtrd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = +oo ) -> ( A *e C ) <_ ( B *e C ) ) |
145 |
|
oveq1 |
|- ( A = -oo -> ( A *e C ) = ( -oo *e C ) ) |
146 |
|
xmulmnf2 |
|- ( ( C e. RR* /\ 0 < C ) -> ( -oo *e C ) = -oo ) |
147 |
146
|
ad2ant2lr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) -> ( -oo *e C ) = -oo ) |
148 |
145 147
|
sylan9eqr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = -oo ) -> ( A *e C ) = -oo ) |
149 |
123
|
ad2antrr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = -oo ) -> ( B *e C ) e. RR* ) |
150 |
|
mnfle |
|- ( ( B *e C ) e. RR* -> -oo <_ ( B *e C ) ) |
151 |
149 150
|
syl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = -oo ) -> -oo <_ ( B *e C ) ) |
152 |
148 151
|
eqbrtrd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) /\ A = -oo ) -> ( A *e C ) <_ ( B *e C ) ) |
153 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
154 |
26 153
|
sylib |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
155 |
132 144 152 154
|
mpjao3dan |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( 0 < C /\ A <_ B ) ) -> ( A *e C ) <_ ( B *e C ) ) |
156 |
155
|
exp32 |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( 0 < C -> ( A <_ B -> ( A *e C ) <_ ( B *e C ) ) ) ) |
157 |
|
xmul01 |
|- ( A e. RR* -> ( A *e 0 ) = 0 ) |
158 |
157
|
ad2antrr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( A *e 0 ) = 0 ) |
159 |
|
xmul01 |
|- ( B e. RR* -> ( B *e 0 ) = 0 ) |
160 |
159
|
ad2antlr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( B *e 0 ) = 0 ) |
161 |
158 160
|
breq12d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( ( A *e 0 ) <_ ( B *e 0 ) <-> 0 <_ 0 ) ) |
162 |
59 161
|
mpbiri |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( A *e 0 ) <_ ( B *e 0 ) ) |
163 |
|
oveq2 |
|- ( 0 = C -> ( A *e 0 ) = ( A *e C ) ) |
164 |
|
oveq2 |
|- ( 0 = C -> ( B *e 0 ) = ( B *e C ) ) |
165 |
163 164
|
breq12d |
|- ( 0 = C -> ( ( A *e 0 ) <_ ( B *e 0 ) <-> ( A *e C ) <_ ( B *e C ) ) ) |
166 |
162 165
|
syl5ibcom |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( 0 = C -> ( A *e C ) <_ ( B *e C ) ) ) |
167 |
166
|
a1dd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( 0 = C -> ( A <_ B -> ( A *e C ) <_ ( B *e C ) ) ) ) |
168 |
156 167
|
jaod |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( ( 0 < C \/ 0 = C ) -> ( A <_ B -> ( A *e C ) <_ ( B *e C ) ) ) ) |
169 |
4 168
|
sylbid |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( 0 <_ C -> ( A <_ B -> ( A *e C ) <_ ( B *e C ) ) ) ) |
170 |
169
|
expimpd |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( C e. RR* /\ 0 <_ C ) -> ( A <_ B -> ( A *e C ) <_ ( B *e C ) ) ) ) |
171 |
170
|
3impia |
|- ( ( A e. RR* /\ B e. RR* /\ ( C e. RR* /\ 0 <_ C ) ) -> ( A <_ B -> ( A *e C ) <_ ( B *e C ) ) ) |
172 |
171
|
imp |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( C e. RR* /\ 0 <_ C ) ) /\ A <_ B ) -> ( A *e C ) <_ ( B *e C ) ) |