Step |
Hyp |
Ref |
Expression |
1 |
|
xlemul1 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A <_ B <-> ( A *e C ) <_ ( B *e C ) ) ) |
2 |
|
simp1 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> A e. RR* ) |
3 |
|
rpxr |
|- ( C e. RR+ -> C e. RR* ) |
4 |
3
|
3ad2ant3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> C e. RR* ) |
5 |
|
xmulcom |
|- ( ( A e. RR* /\ C e. RR* ) -> ( A *e C ) = ( C *e A ) ) |
6 |
2 4 5
|
syl2anc |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A *e C ) = ( C *e A ) ) |
7 |
|
simp2 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> B e. RR* ) |
8 |
|
xmulcom |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B *e C ) = ( C *e B ) ) |
9 |
7 4 8
|
syl2anc |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( B *e C ) = ( C *e B ) ) |
10 |
6 9
|
breq12d |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( A *e C ) <_ ( B *e C ) <-> ( C *e A ) <_ ( C *e B ) ) ) |
11 |
1 10
|
bitrd |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A <_ B <-> ( C *e A ) <_ ( C *e B ) ) ) |