| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlemul1 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A <_ B <-> ( A *e C ) <_ ( B *e C ) ) ) | 
						
							| 2 |  | simp1 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> A e. RR* ) | 
						
							| 3 |  | rpxr |  |-  ( C e. RR+ -> C e. RR* ) | 
						
							| 4 | 3 | 3ad2ant3 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> C e. RR* ) | 
						
							| 5 |  | xmulcom |  |-  ( ( A e. RR* /\ C e. RR* ) -> ( A *e C ) = ( C *e A ) ) | 
						
							| 6 | 2 4 5 | syl2anc |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A *e C ) = ( C *e A ) ) | 
						
							| 7 |  | simp2 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> B e. RR* ) | 
						
							| 8 |  | xmulcom |  |-  ( ( B e. RR* /\ C e. RR* ) -> ( B *e C ) = ( C *e B ) ) | 
						
							| 9 | 7 4 8 | syl2anc |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( B *e C ) = ( C *e B ) ) | 
						
							| 10 | 6 9 | breq12d |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( A *e C ) <_ ( B *e C ) <-> ( C *e A ) <_ ( C *e B ) ) ) | 
						
							| 11 | 1 10 | bitrd |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A <_ B <-> ( C *e A ) <_ ( C *e B ) ) ) |