| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xltneg |  |-  ( ( B e. RR* /\ A e. RR* ) -> ( B < A <-> -e A < -e B ) ) | 
						
							| 2 | 1 | ancoms |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( B < A <-> -e A < -e B ) ) | 
						
							| 3 | 2 | notbid |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( -. B < A <-> -. -e A < -e B ) ) | 
						
							| 4 |  | xrlenlt |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -. B < A ) ) | 
						
							| 5 |  | xnegcl |  |-  ( B e. RR* -> -e B e. RR* ) | 
						
							| 6 |  | xnegcl |  |-  ( A e. RR* -> -e A e. RR* ) | 
						
							| 7 |  | xrlenlt |  |-  ( ( -e B e. RR* /\ -e A e. RR* ) -> ( -e B <_ -e A <-> -. -e A < -e B ) ) | 
						
							| 8 | 5 6 7 | syl2anr |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( -e B <_ -e A <-> -. -e A < -e B ) ) | 
						
							| 9 | 3 4 8 | 3bitr4d |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -e B <_ -e A ) ) |