Metamath Proof Explorer


Theorem xleneg

Description: Extended real version of leneg . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xleneg
|- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -e B <_ -e A ) )

Proof

Step Hyp Ref Expression
1 xltneg
 |-  ( ( B e. RR* /\ A e. RR* ) -> ( B < A <-> -e A < -e B ) )
2 1 ancoms
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( B < A <-> -e A < -e B ) )
3 2 notbid
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( -. B < A <-> -. -e A < -e B ) )
4 xrlenlt
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -. B < A ) )
5 xnegcl
 |-  ( B e. RR* -> -e B e. RR* )
6 xnegcl
 |-  ( A e. RR* -> -e A e. RR* )
7 xrlenlt
 |-  ( ( -e B e. RR* /\ -e A e. RR* ) -> ( -e B <_ -e A <-> -. -e A < -e B ) )
8 5 6 7 syl2anr
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( -e B <_ -e A <-> -. -e A < -e B ) )
9 3 4 8 3bitr4d
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -e B <_ -e A ) )