Description: Extended real version of lenegcon1 . (Contributed by Glauco Siliprandi, 23-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | xlenegcon1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e A <_ B <-> -e B <_ A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegcl | |- ( A e. RR* -> -e A e. RR* ) |
|
2 | xleneg | |- ( ( -e A e. RR* /\ B e. RR* ) -> ( -e A <_ B <-> -e B <_ -e -e A ) ) |
|
3 | 1 2 | sylan | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e A <_ B <-> -e B <_ -e -e A ) ) |
4 | xnegneg | |- ( A e. RR* -> -e -e A = A ) |
|
5 | 4 | breq2d | |- ( A e. RR* -> ( -e B <_ -e -e A <-> -e B <_ A ) ) |
6 | 5 | adantr | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e B <_ -e -e A <-> -e B <_ A ) ) |
7 | 3 6 | bitrd | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e A <_ B <-> -e B <_ A ) ) |