Metamath Proof Explorer


Theorem xlenegcon2

Description: Extended real version of lenegcon2 . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Assertion xlenegcon2
|- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ -e B <-> B <_ -e A ) )

Proof

Step Hyp Ref Expression
1 xnegcl
 |-  ( B e. RR* -> -e B e. RR* )
2 xleneg
 |-  ( ( A e. RR* /\ -e B e. RR* ) -> ( A <_ -e B <-> -e -e B <_ -e A ) )
3 1 2 sylan2
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A <_ -e B <-> -e -e B <_ -e A ) )
4 xnegneg
 |-  ( B e. RR* -> -e -e B = B )
5 4 breq1d
 |-  ( B e. RR* -> ( -e -e B <_ -e A <-> B <_ -e A ) )
6 5 adantl
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( -e -e B <_ -e A <-> B <_ -e A ) )
7 3 6 bitrd
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A <_ -e B <-> B <_ -e A ) )