Description: Extended real version of lenegcon2 . (Contributed by Glauco Siliprandi, 23-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | xlenegcon2 | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ -e B <-> B <_ -e A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegcl | |- ( B e. RR* -> -e B e. RR* ) |
|
2 | xleneg | |- ( ( A e. RR* /\ -e B e. RR* ) -> ( A <_ -e B <-> -e -e B <_ -e A ) ) |
|
3 | 1 2 | sylan2 | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ -e B <-> -e -e B <_ -e A ) ) |
4 | xnegneg | |- ( B e. RR* -> -e -e B = B ) |
|
5 | 4 | breq1d | |- ( B e. RR* -> ( -e -e B <_ -e A <-> B <_ -e A ) ) |
6 | 5 | adantl | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e -e B <_ -e A <-> B <_ -e A ) ) |
7 | 3 6 | bitrd | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ -e B <-> B <_ -e A ) ) |