Description: Extended real version of lt0neg2 . (Contributed by Mario Carneiro, 20-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | xlt0neg2 | |- ( A e. RR* -> ( 0 < A <-> -e A < 0 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr | |- 0 e. RR* |
|
2 | xltneg | |- ( ( 0 e. RR* /\ A e. RR* ) -> ( 0 < A <-> -e A < -e 0 ) ) |
|
3 | 1 2 | mpan | |- ( A e. RR* -> ( 0 < A <-> -e A < -e 0 ) ) |
4 | xneg0 | |- -e 0 = 0 |
|
5 | 4 | breq2i | |- ( -e A < -e 0 <-> -e A < 0 ) |
6 | 3 5 | bitrdi | |- ( A e. RR* -> ( 0 < A <-> -e A < 0 ) ) |