Step |
Hyp |
Ref |
Expression |
1 |
|
xaddcl |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) e. RR* ) |
2 |
1
|
3ad2ant1 |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A +e B ) e. RR* ) |
3 |
2
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( A +e B ) e. RR* ) |
4 |
|
simp1l |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> A e. RR* ) |
5 |
|
simp2r |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> D e. RR* ) |
6 |
|
xaddcl |
|- ( ( A e. RR* /\ D e. RR* ) -> ( A +e D ) e. RR* ) |
7 |
4 5 6
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A +e D ) e. RR* ) |
8 |
7
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( A +e D ) e. RR* ) |
9 |
|
xaddcl |
|- ( ( C e. RR* /\ D e. RR* ) -> ( C +e D ) e. RR* ) |
10 |
9
|
3ad2ant2 |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( C +e D ) e. RR* ) |
11 |
10
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( C +e D ) e. RR* ) |
12 |
|
simp3r |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> B < D ) |
13 |
12
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> B < D ) |
14 |
|
simp1r |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> B e. RR* ) |
15 |
14
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> B e. RR* ) |
16 |
5
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> D e. RR* ) |
17 |
|
simprl |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> A e. RR ) |
18 |
|
xltadd2 |
|- ( ( B e. RR* /\ D e. RR* /\ A e. RR ) -> ( B < D <-> ( A +e B ) < ( A +e D ) ) ) |
19 |
15 16 17 18
|
syl3anc |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( B < D <-> ( A +e B ) < ( A +e D ) ) ) |
20 |
13 19
|
mpbid |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( A +e B ) < ( A +e D ) ) |
21 |
|
simp3l |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> A < C ) |
22 |
21
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> A < C ) |
23 |
4
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> A e. RR* ) |
24 |
|
simp2l |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> C e. RR* ) |
25 |
24
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> C e. RR* ) |
26 |
|
simprr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> D e. RR ) |
27 |
|
xltadd1 |
|- ( ( A e. RR* /\ C e. RR* /\ D e. RR ) -> ( A < C <-> ( A +e D ) < ( C +e D ) ) ) |
28 |
23 25 26 27
|
syl3anc |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( A < C <-> ( A +e D ) < ( C +e D ) ) ) |
29 |
22 28
|
mpbid |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( A +e D ) < ( C +e D ) ) |
30 |
3 8 11 20 29
|
xrlttrd |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( A +e B ) < ( C +e D ) ) |
31 |
30
|
anassrs |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A e. RR ) /\ D e. RR ) -> ( A +e B ) < ( C +e D ) ) |
32 |
|
pnfxr |
|- +oo e. RR* |
33 |
32
|
a1i |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> +oo e. RR* ) |
34 |
|
pnfge |
|- ( C e. RR* -> C <_ +oo ) |
35 |
24 34
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> C <_ +oo ) |
36 |
4 24 33 21 35
|
xrltletrd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> A < +oo ) |
37 |
|
nltpnft |
|- ( A e. RR* -> ( A = +oo <-> -. A < +oo ) ) |
38 |
37
|
necon2abid |
|- ( A e. RR* -> ( A < +oo <-> A =/= +oo ) ) |
39 |
4 38
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A < +oo <-> A =/= +oo ) ) |
40 |
36 39
|
mpbid |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> A =/= +oo ) |
41 |
|
pnfge |
|- ( D e. RR* -> D <_ +oo ) |
42 |
5 41
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> D <_ +oo ) |
43 |
14 5 33 12 42
|
xrltletrd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> B < +oo ) |
44 |
|
nltpnft |
|- ( B e. RR* -> ( B = +oo <-> -. B < +oo ) ) |
45 |
44
|
necon2abid |
|- ( B e. RR* -> ( B < +oo <-> B =/= +oo ) ) |
46 |
14 45
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( B < +oo <-> B =/= +oo ) ) |
47 |
43 46
|
mpbid |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> B =/= +oo ) |
48 |
|
xaddnepnf |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) =/= +oo ) |
49 |
4 40 14 47 48
|
syl22anc |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A +e B ) =/= +oo ) |
50 |
|
nltpnft |
|- ( ( A +e B ) e. RR* -> ( ( A +e B ) = +oo <-> -. ( A +e B ) < +oo ) ) |
51 |
50
|
necon2abid |
|- ( ( A +e B ) e. RR* -> ( ( A +e B ) < +oo <-> ( A +e B ) =/= +oo ) ) |
52 |
2 51
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( ( A +e B ) < +oo <-> ( A +e B ) =/= +oo ) ) |
53 |
49 52
|
mpbird |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A +e B ) < +oo ) |
54 |
53
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ D = +oo ) -> ( A +e B ) < +oo ) |
55 |
|
oveq2 |
|- ( D = +oo -> ( C +e D ) = ( C +e +oo ) ) |
56 |
|
mnfxr |
|- -oo e. RR* |
57 |
56
|
a1i |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> -oo e. RR* ) |
58 |
|
mnfle |
|- ( A e. RR* -> -oo <_ A ) |
59 |
4 58
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> -oo <_ A ) |
60 |
57 4 24 59 21
|
xrlelttrd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> -oo < C ) |
61 |
|
ngtmnft |
|- ( C e. RR* -> ( C = -oo <-> -. -oo < C ) ) |
62 |
61
|
necon2abid |
|- ( C e. RR* -> ( -oo < C <-> C =/= -oo ) ) |
63 |
24 62
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( -oo < C <-> C =/= -oo ) ) |
64 |
60 63
|
mpbid |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> C =/= -oo ) |
65 |
|
xaddpnf1 |
|- ( ( C e. RR* /\ C =/= -oo ) -> ( C +e +oo ) = +oo ) |
66 |
24 64 65
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( C +e +oo ) = +oo ) |
67 |
55 66
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ D = +oo ) -> ( C +e D ) = +oo ) |
68 |
54 67
|
breqtrrd |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ D = +oo ) -> ( A +e B ) < ( C +e D ) ) |
69 |
68
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A e. RR ) /\ D = +oo ) -> ( A +e B ) < ( C +e D ) ) |
70 |
|
mnfle |
|- ( B e. RR* -> -oo <_ B ) |
71 |
14 70
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> -oo <_ B ) |
72 |
57 14 5 71 12
|
xrlelttrd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> -oo < D ) |
73 |
|
ngtmnft |
|- ( D e. RR* -> ( D = -oo <-> -. -oo < D ) ) |
74 |
73
|
necon2abid |
|- ( D e. RR* -> ( -oo < D <-> D =/= -oo ) ) |
75 |
5 74
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( -oo < D <-> D =/= -oo ) ) |
76 |
72 75
|
mpbid |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> D =/= -oo ) |
77 |
76
|
a1d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( -. ( A +e B ) < ( C +e D ) -> D =/= -oo ) ) |
78 |
77
|
necon4bd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( D = -oo -> ( A +e B ) < ( C +e D ) ) ) |
79 |
78
|
imp |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ D = -oo ) -> ( A +e B ) < ( C +e D ) ) |
80 |
79
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A e. RR ) /\ D = -oo ) -> ( A +e B ) < ( C +e D ) ) |
81 |
|
elxr |
|- ( D e. RR* <-> ( D e. RR \/ D = +oo \/ D = -oo ) ) |
82 |
5 81
|
sylib |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( D e. RR \/ D = +oo \/ D = -oo ) ) |
83 |
82
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A e. RR ) -> ( D e. RR \/ D = +oo \/ D = -oo ) ) |
84 |
31 69 80 83
|
mpjao3dan |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A e. RR ) -> ( A +e B ) < ( C +e D ) ) |
85 |
40
|
a1d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( -. ( A +e B ) < ( C +e D ) -> A =/= +oo ) ) |
86 |
85
|
necon4bd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A = +oo -> ( A +e B ) < ( C +e D ) ) ) |
87 |
86
|
imp |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A = +oo ) -> ( A +e B ) < ( C +e D ) ) |
88 |
|
oveq1 |
|- ( A = -oo -> ( A +e B ) = ( -oo +e B ) ) |
89 |
|
xaddmnf2 |
|- ( ( B e. RR* /\ B =/= +oo ) -> ( -oo +e B ) = -oo ) |
90 |
14 47 89
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( -oo +e B ) = -oo ) |
91 |
88 90
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A = -oo ) -> ( A +e B ) = -oo ) |
92 |
|
xaddnemnf |
|- ( ( ( C e. RR* /\ C =/= -oo ) /\ ( D e. RR* /\ D =/= -oo ) ) -> ( C +e D ) =/= -oo ) |
93 |
24 64 5 76 92
|
syl22anc |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( C +e D ) =/= -oo ) |
94 |
|
ngtmnft |
|- ( ( C +e D ) e. RR* -> ( ( C +e D ) = -oo <-> -. -oo < ( C +e D ) ) ) |
95 |
94
|
necon2abid |
|- ( ( C +e D ) e. RR* -> ( -oo < ( C +e D ) <-> ( C +e D ) =/= -oo ) ) |
96 |
10 95
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( -oo < ( C +e D ) <-> ( C +e D ) =/= -oo ) ) |
97 |
93 96
|
mpbird |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> -oo < ( C +e D ) ) |
98 |
97
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A = -oo ) -> -oo < ( C +e D ) ) |
99 |
91 98
|
eqbrtrd |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A = -oo ) -> ( A +e B ) < ( C +e D ) ) |
100 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
101 |
4 100
|
sylib |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
102 |
84 87 99 101
|
mpjao3dan |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A +e B ) < ( C +e D ) ) |
103 |
102
|
3expia |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) -> ( ( A < C /\ B < D ) -> ( A +e B ) < ( C +e D ) ) ) |