| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							xaddcl | 
							 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) e. RR* )  | 
						
						
							| 2 | 
							
								1
							 | 
							3ad2ant1 | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A +e B ) e. RR* )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( A +e B ) e. RR* )  | 
						
						
							| 4 | 
							
								
							 | 
							simp1l | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> A e. RR* )  | 
						
						
							| 5 | 
							
								
							 | 
							simp2r | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> D e. RR* )  | 
						
						
							| 6 | 
							
								
							 | 
							xaddcl | 
							 |-  ( ( A e. RR* /\ D e. RR* ) -> ( A +e D ) e. RR* )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							syl2anc | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A +e D ) e. RR* )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( A +e D ) e. RR* )  | 
						
						
							| 9 | 
							
								
							 | 
							xaddcl | 
							 |-  ( ( C e. RR* /\ D e. RR* ) -> ( C +e D ) e. RR* )  | 
						
						
							| 10 | 
							
								9
							 | 
							3ad2ant2 | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( C +e D ) e. RR* )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( C +e D ) e. RR* )  | 
						
						
							| 12 | 
							
								
							 | 
							simp3r | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> B < D )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> B < D )  | 
						
						
							| 14 | 
							
								
							 | 
							simp1r | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> B e. RR* )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> B e. RR* )  | 
						
						
							| 16 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> D e. RR* )  | 
						
						
							| 17 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> A e. RR )  | 
						
						
							| 18 | 
							
								
							 | 
							xltadd2 | 
							 |-  ( ( B e. RR* /\ D e. RR* /\ A e. RR ) -> ( B < D <-> ( A +e B ) < ( A +e D ) ) )  | 
						
						
							| 19 | 
							
								15 16 17 18
							 | 
							syl3anc | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( B < D <-> ( A +e B ) < ( A +e D ) ) )  | 
						
						
							| 20 | 
							
								13 19
							 | 
							mpbid | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( A +e B ) < ( A +e D ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simp3l | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> A < C )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantr | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> A < C )  | 
						
						
							| 23 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> A e. RR* )  | 
						
						
							| 24 | 
							
								
							 | 
							simp2l | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> C e. RR* )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantr | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> C e. RR* )  | 
						
						
							| 26 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> D e. RR )  | 
						
						
							| 27 | 
							
								
							 | 
							xltadd1 | 
							 |-  ( ( A e. RR* /\ C e. RR* /\ D e. RR ) -> ( A < C <-> ( A +e D ) < ( C +e D ) ) )  | 
						
						
							| 28 | 
							
								23 25 26 27
							 | 
							syl3anc | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( A < C <-> ( A +e D ) < ( C +e D ) ) )  | 
						
						
							| 29 | 
							
								22 28
							 | 
							mpbid | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( A +e D ) < ( C +e D ) )  | 
						
						
							| 30 | 
							
								3 8 11 20 29
							 | 
							xrlttrd | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( A +e B ) < ( C +e D ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							anassrs | 
							 |-  ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A e. RR ) /\ D e. RR ) -> ( A +e B ) < ( C +e D ) )  | 
						
						
							| 32 | 
							
								
							 | 
							pnfxr | 
							 |-  +oo e. RR*  | 
						
						
							| 33 | 
							
								32
							 | 
							a1i | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> +oo e. RR* )  | 
						
						
							| 34 | 
							
								
							 | 
							pnfge | 
							 |-  ( C e. RR* -> C <_ +oo )  | 
						
						
							| 35 | 
							
								24 34
							 | 
							syl | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> C <_ +oo )  | 
						
						
							| 36 | 
							
								4 24 33 21 35
							 | 
							xrltletrd | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> A < +oo )  | 
						
						
							| 37 | 
							
								
							 | 
							nltpnft | 
							 |-  ( A e. RR* -> ( A = +oo <-> -. A < +oo ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							necon2abid | 
							 |-  ( A e. RR* -> ( A < +oo <-> A =/= +oo ) )  | 
						
						
							| 39 | 
							
								4 38
							 | 
							syl | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A < +oo <-> A =/= +oo ) )  | 
						
						
							| 40 | 
							
								36 39
							 | 
							mpbid | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> A =/= +oo )  | 
						
						
							| 41 | 
							
								
							 | 
							pnfge | 
							 |-  ( D e. RR* -> D <_ +oo )  | 
						
						
							| 42 | 
							
								5 41
							 | 
							syl | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> D <_ +oo )  | 
						
						
							| 43 | 
							
								14 5 33 12 42
							 | 
							xrltletrd | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> B < +oo )  | 
						
						
							| 44 | 
							
								
							 | 
							nltpnft | 
							 |-  ( B e. RR* -> ( B = +oo <-> -. B < +oo ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							necon2abid | 
							 |-  ( B e. RR* -> ( B < +oo <-> B =/= +oo ) )  | 
						
						
							| 46 | 
							
								14 45
							 | 
							syl | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( B < +oo <-> B =/= +oo ) )  | 
						
						
							| 47 | 
							
								43 46
							 | 
							mpbid | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> B =/= +oo )  | 
						
						
							| 48 | 
							
								
							 | 
							xaddnepnf | 
							 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) =/= +oo )  | 
						
						
							| 49 | 
							
								4 40 14 47 48
							 | 
							syl22anc | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A +e B ) =/= +oo )  | 
						
						
							| 50 | 
							
								
							 | 
							nltpnft | 
							 |-  ( ( A +e B ) e. RR* -> ( ( A +e B ) = +oo <-> -. ( A +e B ) < +oo ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							necon2abid | 
							 |-  ( ( A +e B ) e. RR* -> ( ( A +e B ) < +oo <-> ( A +e B ) =/= +oo ) )  | 
						
						
							| 52 | 
							
								2 51
							 | 
							syl | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( ( A +e B ) < +oo <-> ( A +e B ) =/= +oo ) )  | 
						
						
							| 53 | 
							
								49 52
							 | 
							mpbird | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A +e B ) < +oo )  | 
						
						
							| 54 | 
							
								53
							 | 
							adantr | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ D = +oo ) -> ( A +e B ) < +oo )  | 
						
						
							| 55 | 
							
								
							 | 
							oveq2 | 
							 |-  ( D = +oo -> ( C +e D ) = ( C +e +oo ) )  | 
						
						
							| 56 | 
							
								
							 | 
							mnfxr | 
							 |-  -oo e. RR*  | 
						
						
							| 57 | 
							
								56
							 | 
							a1i | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> -oo e. RR* )  | 
						
						
							| 58 | 
							
								
							 | 
							mnfle | 
							 |-  ( A e. RR* -> -oo <_ A )  | 
						
						
							| 59 | 
							
								4 58
							 | 
							syl | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> -oo <_ A )  | 
						
						
							| 60 | 
							
								57 4 24 59 21
							 | 
							xrlelttrd | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> -oo < C )  | 
						
						
							| 61 | 
							
								
							 | 
							ngtmnft | 
							 |-  ( C e. RR* -> ( C = -oo <-> -. -oo < C ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							necon2abid | 
							 |-  ( C e. RR* -> ( -oo < C <-> C =/= -oo ) )  | 
						
						
							| 63 | 
							
								24 62
							 | 
							syl | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( -oo < C <-> C =/= -oo ) )  | 
						
						
							| 64 | 
							
								60 63
							 | 
							mpbid | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> C =/= -oo )  | 
						
						
							| 65 | 
							
								
							 | 
							xaddpnf1 | 
							 |-  ( ( C e. RR* /\ C =/= -oo ) -> ( C +e +oo ) = +oo )  | 
						
						
							| 66 | 
							
								24 64 65
							 | 
							syl2anc | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( C +e +oo ) = +oo )  | 
						
						
							| 67 | 
							
								55 66
							 | 
							sylan9eqr | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ D = +oo ) -> ( C +e D ) = +oo )  | 
						
						
							| 68 | 
							
								54 67
							 | 
							breqtrrd | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ D = +oo ) -> ( A +e B ) < ( C +e D ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							adantlr | 
							 |-  ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A e. RR ) /\ D = +oo ) -> ( A +e B ) < ( C +e D ) )  | 
						
						
							| 70 | 
							
								
							 | 
							mnfle | 
							 |-  ( B e. RR* -> -oo <_ B )  | 
						
						
							| 71 | 
							
								14 70
							 | 
							syl | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> -oo <_ B )  | 
						
						
							| 72 | 
							
								57 14 5 71 12
							 | 
							xrlelttrd | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> -oo < D )  | 
						
						
							| 73 | 
							
								
							 | 
							ngtmnft | 
							 |-  ( D e. RR* -> ( D = -oo <-> -. -oo < D ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							necon2abid | 
							 |-  ( D e. RR* -> ( -oo < D <-> D =/= -oo ) )  | 
						
						
							| 75 | 
							
								5 74
							 | 
							syl | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( -oo < D <-> D =/= -oo ) )  | 
						
						
							| 76 | 
							
								72 75
							 | 
							mpbid | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> D =/= -oo )  | 
						
						
							| 77 | 
							
								76
							 | 
							a1d | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( -. ( A +e B ) < ( C +e D ) -> D =/= -oo ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							necon4bd | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( D = -oo -> ( A +e B ) < ( C +e D ) ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							imp | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ D = -oo ) -> ( A +e B ) < ( C +e D ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							adantlr | 
							 |-  ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A e. RR ) /\ D = -oo ) -> ( A +e B ) < ( C +e D ) )  | 
						
						
							| 81 | 
							
								
							 | 
							elxr | 
							 |-  ( D e. RR* <-> ( D e. RR \/ D = +oo \/ D = -oo ) )  | 
						
						
							| 82 | 
							
								5 81
							 | 
							sylib | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( D e. RR \/ D = +oo \/ D = -oo ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							adantr | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A e. RR ) -> ( D e. RR \/ D = +oo \/ D = -oo ) )  | 
						
						
							| 84 | 
							
								31 69 80 83
							 | 
							mpjao3dan | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A e. RR ) -> ( A +e B ) < ( C +e D ) )  | 
						
						
							| 85 | 
							
								40
							 | 
							a1d | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( -. ( A +e B ) < ( C +e D ) -> A =/= +oo ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							necon4bd | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A = +oo -> ( A +e B ) < ( C +e D ) ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							imp | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A = +oo ) -> ( A +e B ) < ( C +e D ) )  | 
						
						
							| 88 | 
							
								
							 | 
							oveq1 | 
							 |-  ( A = -oo -> ( A +e B ) = ( -oo +e B ) )  | 
						
						
							| 89 | 
							
								
							 | 
							xaddmnf2 | 
							 |-  ( ( B e. RR* /\ B =/= +oo ) -> ( -oo +e B ) = -oo )  | 
						
						
							| 90 | 
							
								14 47 89
							 | 
							syl2anc | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( -oo +e B ) = -oo )  | 
						
						
							| 91 | 
							
								88 90
							 | 
							sylan9eqr | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A = -oo ) -> ( A +e B ) = -oo )  | 
						
						
							| 92 | 
							
								
							 | 
							xaddnemnf | 
							 |-  ( ( ( C e. RR* /\ C =/= -oo ) /\ ( D e. RR* /\ D =/= -oo ) ) -> ( C +e D ) =/= -oo )  | 
						
						
							| 93 | 
							
								24 64 5 76 92
							 | 
							syl22anc | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( C +e D ) =/= -oo )  | 
						
						
							| 94 | 
							
								
							 | 
							ngtmnft | 
							 |-  ( ( C +e D ) e. RR* -> ( ( C +e D ) = -oo <-> -. -oo < ( C +e D ) ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							necon2abid | 
							 |-  ( ( C +e D ) e. RR* -> ( -oo < ( C +e D ) <-> ( C +e D ) =/= -oo ) )  | 
						
						
							| 96 | 
							
								10 95
							 | 
							syl | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( -oo < ( C +e D ) <-> ( C +e D ) =/= -oo ) )  | 
						
						
							| 97 | 
							
								93 96
							 | 
							mpbird | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> -oo < ( C +e D ) )  | 
						
						
							| 98 | 
							
								97
							 | 
							adantr | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A = -oo ) -> -oo < ( C +e D ) )  | 
						
						
							| 99 | 
							
								91 98
							 | 
							eqbrtrd | 
							 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A = -oo ) -> ( A +e B ) < ( C +e D ) )  | 
						
						
							| 100 | 
							
								
							 | 
							elxr | 
							 |-  ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) )  | 
						
						
							| 101 | 
							
								4 100
							 | 
							sylib | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A e. RR \/ A = +oo \/ A = -oo ) )  | 
						
						
							| 102 | 
							
								84 87 99 101
							 | 
							mpjao3dan | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A +e B ) < ( C +e D ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							3expia | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) -> ( ( A < C /\ B < D ) -> ( A +e B ) < ( C +e D ) ) )  |