| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlemul1 |  |-  ( ( B e. RR* /\ A e. RR* /\ C e. RR+ ) -> ( B <_ A <-> ( B *e C ) <_ ( A *e C ) ) ) | 
						
							| 2 | 1 | 3com12 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( B <_ A <-> ( B *e C ) <_ ( A *e C ) ) ) | 
						
							| 3 | 2 | notbid |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( -. B <_ A <-> -. ( B *e C ) <_ ( A *e C ) ) ) | 
						
							| 4 |  | xrltnle |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> -. B <_ A ) ) | 
						
							| 5 | 4 | 3adant3 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A < B <-> -. B <_ A ) ) | 
						
							| 6 |  | simp1 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> A e. RR* ) | 
						
							| 7 |  | rpxr |  |-  ( C e. RR+ -> C e. RR* ) | 
						
							| 8 | 7 | 3ad2ant3 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> C e. RR* ) | 
						
							| 9 |  | xmulcl |  |-  ( ( A e. RR* /\ C e. RR* ) -> ( A *e C ) e. RR* ) | 
						
							| 10 | 6 8 9 | syl2anc |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A *e C ) e. RR* ) | 
						
							| 11 |  | simp2 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> B e. RR* ) | 
						
							| 12 |  | xmulcl |  |-  ( ( B e. RR* /\ C e. RR* ) -> ( B *e C ) e. RR* ) | 
						
							| 13 | 11 8 12 | syl2anc |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( B *e C ) e. RR* ) | 
						
							| 14 |  | xrltnle |  |-  ( ( ( A *e C ) e. RR* /\ ( B *e C ) e. RR* ) -> ( ( A *e C ) < ( B *e C ) <-> -. ( B *e C ) <_ ( A *e C ) ) ) | 
						
							| 15 | 10 13 14 | syl2anc |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( A *e C ) < ( B *e C ) <-> -. ( B *e C ) <_ ( A *e C ) ) ) | 
						
							| 16 | 3 5 15 | 3bitr4d |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A < B <-> ( A *e C ) < ( B *e C ) ) ) |