Step |
Hyp |
Ref |
Expression |
1 |
|
xltmul1 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A < B <-> ( A *e C ) < ( B *e C ) ) ) |
2 |
|
rpxr |
|- ( C e. RR+ -> C e. RR* ) |
3 |
|
xmulcom |
|- ( ( A e. RR* /\ C e. RR* ) -> ( A *e C ) = ( C *e A ) ) |
4 |
3
|
3adant2 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( A *e C ) = ( C *e A ) ) |
5 |
|
xmulcom |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B *e C ) = ( C *e B ) ) |
6 |
5
|
3adant1 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B *e C ) = ( C *e B ) ) |
7 |
4 6
|
breq12d |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A *e C ) < ( B *e C ) <-> ( C *e A ) < ( C *e B ) ) ) |
8 |
2 7
|
syl3an3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( A *e C ) < ( B *e C ) <-> ( C *e A ) < ( C *e B ) ) ) |
9 |
1 8
|
bitrd |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A < B <-> ( C *e A ) < ( C *e B ) ) ) |