| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xltmul1 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A < B <-> ( A *e C ) < ( B *e C ) ) ) | 
						
							| 2 |  | rpxr |  |-  ( C e. RR+ -> C e. RR* ) | 
						
							| 3 |  | xmulcom |  |-  ( ( A e. RR* /\ C e. RR* ) -> ( A *e C ) = ( C *e A ) ) | 
						
							| 4 | 3 | 3adant2 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( A *e C ) = ( C *e A ) ) | 
						
							| 5 |  | xmulcom |  |-  ( ( B e. RR* /\ C e. RR* ) -> ( B *e C ) = ( C *e B ) ) | 
						
							| 6 | 5 | 3adant1 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B *e C ) = ( C *e B ) ) | 
						
							| 7 | 4 6 | breq12d |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A *e C ) < ( B *e C ) <-> ( C *e A ) < ( C *e B ) ) ) | 
						
							| 8 | 2 7 | syl3an3 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( A *e C ) < ( B *e C ) <-> ( C *e A ) < ( C *e B ) ) ) | 
						
							| 9 | 1 8 | bitrd |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A < B <-> ( C *e A ) < ( C *e B ) ) ) |