Step |
Hyp |
Ref |
Expression |
1 |
|
xltnegi |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> -e B < -e A ) |
2 |
1
|
3expia |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> -e B < -e A ) ) |
3 |
|
xnegcl |
|- ( B e. RR* -> -e B e. RR* ) |
4 |
|
xnegcl |
|- ( A e. RR* -> -e A e. RR* ) |
5 |
|
xltnegi |
|- ( ( -e B e. RR* /\ -e A e. RR* /\ -e B < -e A ) -> -e -e A < -e -e B ) |
6 |
5
|
3expia |
|- ( ( -e B e. RR* /\ -e A e. RR* ) -> ( -e B < -e A -> -e -e A < -e -e B ) ) |
7 |
3 4 6
|
syl2anr |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -e B < -e A -> -e -e A < -e -e B ) ) |
8 |
|
xnegneg |
|- ( A e. RR* -> -e -e A = A ) |
9 |
|
xnegneg |
|- ( B e. RR* -> -e -e B = B ) |
10 |
8 9
|
breqan12d |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -e -e A < -e -e B <-> A < B ) ) |
11 |
7 10
|
sylibd |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -e B < -e A -> A < B ) ) |
12 |
2 11
|
impbid |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> -e B < -e A ) ) |