Metamath Proof Explorer


Theorem xltnegi

Description: Forward direction of xltneg . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xltnegi
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> -e B < -e A )

Proof

Step Hyp Ref Expression
1 elxr
 |-  ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) )
2 elxr
 |-  ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) )
3 ltneg
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -u B < -u A ) )
4 rexneg
 |-  ( B e. RR -> -e B = -u B )
5 rexneg
 |-  ( A e. RR -> -e A = -u A )
6 4 5 breqan12rd
 |-  ( ( A e. RR /\ B e. RR ) -> ( -e B < -e A <-> -u B < -u A ) )
7 3 6 bitr4d
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -e B < -e A ) )
8 7 biimpd
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B -> -e B < -e A ) )
9 xnegeq
 |-  ( B = +oo -> -e B = -e +oo )
10 xnegpnf
 |-  -e +oo = -oo
11 9 10 eqtrdi
 |-  ( B = +oo -> -e B = -oo )
12 11 adantl
 |-  ( ( A e. RR /\ B = +oo ) -> -e B = -oo )
13 renegcl
 |-  ( A e. RR -> -u A e. RR )
14 5 13 eqeltrd
 |-  ( A e. RR -> -e A e. RR )
15 14 mnfltd
 |-  ( A e. RR -> -oo < -e A )
16 15 adantr
 |-  ( ( A e. RR /\ B = +oo ) -> -oo < -e A )
17 12 16 eqbrtrd
 |-  ( ( A e. RR /\ B = +oo ) -> -e B < -e A )
18 17 a1d
 |-  ( ( A e. RR /\ B = +oo ) -> ( A < B -> -e B < -e A ) )
19 simpr
 |-  ( ( A e. RR /\ B = -oo ) -> B = -oo )
20 19 breq2d
 |-  ( ( A e. RR /\ B = -oo ) -> ( A < B <-> A < -oo ) )
21 rexr
 |-  ( A e. RR -> A e. RR* )
22 nltmnf
 |-  ( A e. RR* -> -. A < -oo )
23 21 22 syl
 |-  ( A e. RR -> -. A < -oo )
24 23 adantr
 |-  ( ( A e. RR /\ B = -oo ) -> -. A < -oo )
25 24 pm2.21d
 |-  ( ( A e. RR /\ B = -oo ) -> ( A < -oo -> -e B < -e A ) )
26 20 25 sylbid
 |-  ( ( A e. RR /\ B = -oo ) -> ( A < B -> -e B < -e A ) )
27 8 18 26 3jaodan
 |-  ( ( A e. RR /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( A < B -> -e B < -e A ) )
28 2 27 sylan2b
 |-  ( ( A e. RR /\ B e. RR* ) -> ( A < B -> -e B < -e A ) )
29 28 expimpd
 |-  ( A e. RR -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) )
30 simpl
 |-  ( ( A = +oo /\ B e. RR* ) -> A = +oo )
31 30 breq1d
 |-  ( ( A = +oo /\ B e. RR* ) -> ( A < B <-> +oo < B ) )
32 pnfnlt
 |-  ( B e. RR* -> -. +oo < B )
33 32 adantl
 |-  ( ( A = +oo /\ B e. RR* ) -> -. +oo < B )
34 33 pm2.21d
 |-  ( ( A = +oo /\ B e. RR* ) -> ( +oo < B -> -e B < -e A ) )
35 31 34 sylbid
 |-  ( ( A = +oo /\ B e. RR* ) -> ( A < B -> -e B < -e A ) )
36 35 expimpd
 |-  ( A = +oo -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) )
37 breq1
 |-  ( A = -oo -> ( A < B <-> -oo < B ) )
38 37 anbi2d
 |-  ( A = -oo -> ( ( B e. RR* /\ A < B ) <-> ( B e. RR* /\ -oo < B ) ) )
39 renegcl
 |-  ( B e. RR -> -u B e. RR )
40 4 39 eqeltrd
 |-  ( B e. RR -> -e B e. RR )
41 40 adantr
 |-  ( ( B e. RR /\ -oo < B ) -> -e B e. RR )
42 41 ltpnfd
 |-  ( ( B e. RR /\ -oo < B ) -> -e B < +oo )
43 11 adantr
 |-  ( ( B = +oo /\ -oo < B ) -> -e B = -oo )
44 mnfltpnf
 |-  -oo < +oo
45 43 44 eqbrtrdi
 |-  ( ( B = +oo /\ -oo < B ) -> -e B < +oo )
46 breq2
 |-  ( B = -oo -> ( -oo < B <-> -oo < -oo ) )
47 mnfxr
 |-  -oo e. RR*
48 nltmnf
 |-  ( -oo e. RR* -> -. -oo < -oo )
49 47 48 ax-mp
 |-  -. -oo < -oo
50 49 pm2.21i
 |-  ( -oo < -oo -> -e B < +oo )
51 46 50 syl6bi
 |-  ( B = -oo -> ( -oo < B -> -e B < +oo ) )
52 51 imp
 |-  ( ( B = -oo /\ -oo < B ) -> -e B < +oo )
53 42 45 52 3jaoian
 |-  ( ( ( B e. RR \/ B = +oo \/ B = -oo ) /\ -oo < B ) -> -e B < +oo )
54 2 53 sylanb
 |-  ( ( B e. RR* /\ -oo < B ) -> -e B < +oo )
55 xnegeq
 |-  ( A = -oo -> -e A = -e -oo )
56 xnegmnf
 |-  -e -oo = +oo
57 55 56 eqtrdi
 |-  ( A = -oo -> -e A = +oo )
58 57 breq2d
 |-  ( A = -oo -> ( -e B < -e A <-> -e B < +oo ) )
59 54 58 syl5ibr
 |-  ( A = -oo -> ( ( B e. RR* /\ -oo < B ) -> -e B < -e A ) )
60 38 59 sylbid
 |-  ( A = -oo -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) )
61 29 36 60 3jaoi
 |-  ( ( A e. RR \/ A = +oo \/ A = -oo ) -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) )
62 1 61 sylbi
 |-  ( A e. RR* -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) )
63 62 3impib
 |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> -e B < -e A )