| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 2 |
|
elxr |
|- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 3 |
|
ltneg |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -u B < -u A ) ) |
| 4 |
|
rexneg |
|- ( B e. RR -> -e B = -u B ) |
| 5 |
|
rexneg |
|- ( A e. RR -> -e A = -u A ) |
| 6 |
4 5
|
breqan12rd |
|- ( ( A e. RR /\ B e. RR ) -> ( -e B < -e A <-> -u B < -u A ) ) |
| 7 |
3 6
|
bitr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -e B < -e A ) ) |
| 8 |
7
|
biimpd |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B -> -e B < -e A ) ) |
| 9 |
|
xnegeq |
|- ( B = +oo -> -e B = -e +oo ) |
| 10 |
|
xnegpnf |
|- -e +oo = -oo |
| 11 |
9 10
|
eqtrdi |
|- ( B = +oo -> -e B = -oo ) |
| 12 |
11
|
adantl |
|- ( ( A e. RR /\ B = +oo ) -> -e B = -oo ) |
| 13 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
| 14 |
5 13
|
eqeltrd |
|- ( A e. RR -> -e A e. RR ) |
| 15 |
14
|
mnfltd |
|- ( A e. RR -> -oo < -e A ) |
| 16 |
15
|
adantr |
|- ( ( A e. RR /\ B = +oo ) -> -oo < -e A ) |
| 17 |
12 16
|
eqbrtrd |
|- ( ( A e. RR /\ B = +oo ) -> -e B < -e A ) |
| 18 |
17
|
a1d |
|- ( ( A e. RR /\ B = +oo ) -> ( A < B -> -e B < -e A ) ) |
| 19 |
|
simpr |
|- ( ( A e. RR /\ B = -oo ) -> B = -oo ) |
| 20 |
19
|
breq2d |
|- ( ( A e. RR /\ B = -oo ) -> ( A < B <-> A < -oo ) ) |
| 21 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
| 22 |
|
nltmnf |
|- ( A e. RR* -> -. A < -oo ) |
| 23 |
21 22
|
syl |
|- ( A e. RR -> -. A < -oo ) |
| 24 |
23
|
adantr |
|- ( ( A e. RR /\ B = -oo ) -> -. A < -oo ) |
| 25 |
24
|
pm2.21d |
|- ( ( A e. RR /\ B = -oo ) -> ( A < -oo -> -e B < -e A ) ) |
| 26 |
20 25
|
sylbid |
|- ( ( A e. RR /\ B = -oo ) -> ( A < B -> -e B < -e A ) ) |
| 27 |
8 18 26
|
3jaodan |
|- ( ( A e. RR /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( A < B -> -e B < -e A ) ) |
| 28 |
2 27
|
sylan2b |
|- ( ( A e. RR /\ B e. RR* ) -> ( A < B -> -e B < -e A ) ) |
| 29 |
28
|
expimpd |
|- ( A e. RR -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) ) |
| 30 |
|
simpl |
|- ( ( A = +oo /\ B e. RR* ) -> A = +oo ) |
| 31 |
30
|
breq1d |
|- ( ( A = +oo /\ B e. RR* ) -> ( A < B <-> +oo < B ) ) |
| 32 |
|
pnfnlt |
|- ( B e. RR* -> -. +oo < B ) |
| 33 |
32
|
adantl |
|- ( ( A = +oo /\ B e. RR* ) -> -. +oo < B ) |
| 34 |
33
|
pm2.21d |
|- ( ( A = +oo /\ B e. RR* ) -> ( +oo < B -> -e B < -e A ) ) |
| 35 |
31 34
|
sylbid |
|- ( ( A = +oo /\ B e. RR* ) -> ( A < B -> -e B < -e A ) ) |
| 36 |
35
|
expimpd |
|- ( A = +oo -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) ) |
| 37 |
|
breq1 |
|- ( A = -oo -> ( A < B <-> -oo < B ) ) |
| 38 |
37
|
anbi2d |
|- ( A = -oo -> ( ( B e. RR* /\ A < B ) <-> ( B e. RR* /\ -oo < B ) ) ) |
| 39 |
|
renegcl |
|- ( B e. RR -> -u B e. RR ) |
| 40 |
4 39
|
eqeltrd |
|- ( B e. RR -> -e B e. RR ) |
| 41 |
40
|
adantr |
|- ( ( B e. RR /\ -oo < B ) -> -e B e. RR ) |
| 42 |
41
|
ltpnfd |
|- ( ( B e. RR /\ -oo < B ) -> -e B < +oo ) |
| 43 |
11
|
adantr |
|- ( ( B = +oo /\ -oo < B ) -> -e B = -oo ) |
| 44 |
|
mnfltpnf |
|- -oo < +oo |
| 45 |
43 44
|
eqbrtrdi |
|- ( ( B = +oo /\ -oo < B ) -> -e B < +oo ) |
| 46 |
|
breq2 |
|- ( B = -oo -> ( -oo < B <-> -oo < -oo ) ) |
| 47 |
|
mnfxr |
|- -oo e. RR* |
| 48 |
|
nltmnf |
|- ( -oo e. RR* -> -. -oo < -oo ) |
| 49 |
47 48
|
ax-mp |
|- -. -oo < -oo |
| 50 |
49
|
pm2.21i |
|- ( -oo < -oo -> -e B < +oo ) |
| 51 |
46 50
|
biimtrdi |
|- ( B = -oo -> ( -oo < B -> -e B < +oo ) ) |
| 52 |
51
|
imp |
|- ( ( B = -oo /\ -oo < B ) -> -e B < +oo ) |
| 53 |
42 45 52
|
3jaoian |
|- ( ( ( B e. RR \/ B = +oo \/ B = -oo ) /\ -oo < B ) -> -e B < +oo ) |
| 54 |
2 53
|
sylanb |
|- ( ( B e. RR* /\ -oo < B ) -> -e B < +oo ) |
| 55 |
|
xnegeq |
|- ( A = -oo -> -e A = -e -oo ) |
| 56 |
|
xnegmnf |
|- -e -oo = +oo |
| 57 |
55 56
|
eqtrdi |
|- ( A = -oo -> -e A = +oo ) |
| 58 |
57
|
breq2d |
|- ( A = -oo -> ( -e B < -e A <-> -e B < +oo ) ) |
| 59 |
54 58
|
imbitrrid |
|- ( A = -oo -> ( ( B e. RR* /\ -oo < B ) -> -e B < -e A ) ) |
| 60 |
38 59
|
sylbid |
|- ( A = -oo -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) ) |
| 61 |
29 36 60
|
3jaoi |
|- ( ( A e. RR \/ A = +oo \/ A = -oo ) -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) ) |
| 62 |
1 61
|
sylbi |
|- ( A e. RR* -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) ) |
| 63 |
62
|
3impib |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> -e B < -e A ) |