Step |
Hyp |
Ref |
Expression |
1 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
2 |
|
elxr |
|- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
3 |
|
ltneg |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -u B < -u A ) ) |
4 |
|
rexneg |
|- ( B e. RR -> -e B = -u B ) |
5 |
|
rexneg |
|- ( A e. RR -> -e A = -u A ) |
6 |
4 5
|
breqan12rd |
|- ( ( A e. RR /\ B e. RR ) -> ( -e B < -e A <-> -u B < -u A ) ) |
7 |
3 6
|
bitr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -e B < -e A ) ) |
8 |
7
|
biimpd |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B -> -e B < -e A ) ) |
9 |
|
xnegeq |
|- ( B = +oo -> -e B = -e +oo ) |
10 |
|
xnegpnf |
|- -e +oo = -oo |
11 |
9 10
|
eqtrdi |
|- ( B = +oo -> -e B = -oo ) |
12 |
11
|
adantl |
|- ( ( A e. RR /\ B = +oo ) -> -e B = -oo ) |
13 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
14 |
5 13
|
eqeltrd |
|- ( A e. RR -> -e A e. RR ) |
15 |
14
|
mnfltd |
|- ( A e. RR -> -oo < -e A ) |
16 |
15
|
adantr |
|- ( ( A e. RR /\ B = +oo ) -> -oo < -e A ) |
17 |
12 16
|
eqbrtrd |
|- ( ( A e. RR /\ B = +oo ) -> -e B < -e A ) |
18 |
17
|
a1d |
|- ( ( A e. RR /\ B = +oo ) -> ( A < B -> -e B < -e A ) ) |
19 |
|
simpr |
|- ( ( A e. RR /\ B = -oo ) -> B = -oo ) |
20 |
19
|
breq2d |
|- ( ( A e. RR /\ B = -oo ) -> ( A < B <-> A < -oo ) ) |
21 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
22 |
|
nltmnf |
|- ( A e. RR* -> -. A < -oo ) |
23 |
21 22
|
syl |
|- ( A e. RR -> -. A < -oo ) |
24 |
23
|
adantr |
|- ( ( A e. RR /\ B = -oo ) -> -. A < -oo ) |
25 |
24
|
pm2.21d |
|- ( ( A e. RR /\ B = -oo ) -> ( A < -oo -> -e B < -e A ) ) |
26 |
20 25
|
sylbid |
|- ( ( A e. RR /\ B = -oo ) -> ( A < B -> -e B < -e A ) ) |
27 |
8 18 26
|
3jaodan |
|- ( ( A e. RR /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( A < B -> -e B < -e A ) ) |
28 |
2 27
|
sylan2b |
|- ( ( A e. RR /\ B e. RR* ) -> ( A < B -> -e B < -e A ) ) |
29 |
28
|
expimpd |
|- ( A e. RR -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) ) |
30 |
|
simpl |
|- ( ( A = +oo /\ B e. RR* ) -> A = +oo ) |
31 |
30
|
breq1d |
|- ( ( A = +oo /\ B e. RR* ) -> ( A < B <-> +oo < B ) ) |
32 |
|
pnfnlt |
|- ( B e. RR* -> -. +oo < B ) |
33 |
32
|
adantl |
|- ( ( A = +oo /\ B e. RR* ) -> -. +oo < B ) |
34 |
33
|
pm2.21d |
|- ( ( A = +oo /\ B e. RR* ) -> ( +oo < B -> -e B < -e A ) ) |
35 |
31 34
|
sylbid |
|- ( ( A = +oo /\ B e. RR* ) -> ( A < B -> -e B < -e A ) ) |
36 |
35
|
expimpd |
|- ( A = +oo -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) ) |
37 |
|
breq1 |
|- ( A = -oo -> ( A < B <-> -oo < B ) ) |
38 |
37
|
anbi2d |
|- ( A = -oo -> ( ( B e. RR* /\ A < B ) <-> ( B e. RR* /\ -oo < B ) ) ) |
39 |
|
renegcl |
|- ( B e. RR -> -u B e. RR ) |
40 |
4 39
|
eqeltrd |
|- ( B e. RR -> -e B e. RR ) |
41 |
40
|
adantr |
|- ( ( B e. RR /\ -oo < B ) -> -e B e. RR ) |
42 |
41
|
ltpnfd |
|- ( ( B e. RR /\ -oo < B ) -> -e B < +oo ) |
43 |
11
|
adantr |
|- ( ( B = +oo /\ -oo < B ) -> -e B = -oo ) |
44 |
|
mnfltpnf |
|- -oo < +oo |
45 |
43 44
|
eqbrtrdi |
|- ( ( B = +oo /\ -oo < B ) -> -e B < +oo ) |
46 |
|
breq2 |
|- ( B = -oo -> ( -oo < B <-> -oo < -oo ) ) |
47 |
|
mnfxr |
|- -oo e. RR* |
48 |
|
nltmnf |
|- ( -oo e. RR* -> -. -oo < -oo ) |
49 |
47 48
|
ax-mp |
|- -. -oo < -oo |
50 |
49
|
pm2.21i |
|- ( -oo < -oo -> -e B < +oo ) |
51 |
46 50
|
syl6bi |
|- ( B = -oo -> ( -oo < B -> -e B < +oo ) ) |
52 |
51
|
imp |
|- ( ( B = -oo /\ -oo < B ) -> -e B < +oo ) |
53 |
42 45 52
|
3jaoian |
|- ( ( ( B e. RR \/ B = +oo \/ B = -oo ) /\ -oo < B ) -> -e B < +oo ) |
54 |
2 53
|
sylanb |
|- ( ( B e. RR* /\ -oo < B ) -> -e B < +oo ) |
55 |
|
xnegeq |
|- ( A = -oo -> -e A = -e -oo ) |
56 |
|
xnegmnf |
|- -e -oo = +oo |
57 |
55 56
|
eqtrdi |
|- ( A = -oo -> -e A = +oo ) |
58 |
57
|
breq2d |
|- ( A = -oo -> ( -e B < -e A <-> -e B < +oo ) ) |
59 |
54 58
|
syl5ibr |
|- ( A = -oo -> ( ( B e. RR* /\ -oo < B ) -> -e B < -e A ) ) |
60 |
38 59
|
sylbid |
|- ( A = -oo -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) ) |
61 |
29 36 60
|
3jaoi |
|- ( ( A e. RR \/ A = +oo \/ A = -oo ) -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) ) |
62 |
1 61
|
sylbi |
|- ( A e. RR* -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) ) |
63 |
62
|
3impib |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> -e B < -e A ) |