Metamath Proof Explorer


Theorem xmet0

Description: The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of Gleason p. 223. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmet0
|- ( ( D e. ( *Met ` X ) /\ A e. X ) -> ( A D A ) = 0 )

Proof

Step Hyp Ref Expression
1 eqid
 |-  A = A
2 xmeteq0
 |-  ( ( D e. ( *Met ` X ) /\ A e. X /\ A e. X ) -> ( ( A D A ) = 0 <-> A = A ) )
3 2 3anidm23
 |-  ( ( D e. ( *Met ` X ) /\ A e. X ) -> ( ( A D A ) = 0 <-> A = A ) )
4 1 3 mpbiri
 |-  ( ( D e. ( *Met ` X ) /\ A e. X ) -> ( A D A ) = 0 )