| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xmeter.1 |  |-  .~ = ( `' D " RR ) | 
						
							| 2 | 1 | xmeterval |  |-  ( D e. ( *Met ` X ) -> ( P .~ x <-> ( P e. X /\ x e. X /\ ( P D x ) e. RR ) ) ) | 
						
							| 3 |  | 3anass |  |-  ( ( P e. X /\ x e. X /\ ( P D x ) e. RR ) <-> ( P e. X /\ ( x e. X /\ ( P D x ) e. RR ) ) ) | 
						
							| 4 | 3 | baib |  |-  ( P e. X -> ( ( P e. X /\ x e. X /\ ( P D x ) e. RR ) <-> ( x e. X /\ ( P D x ) e. RR ) ) ) | 
						
							| 5 | 2 4 | sylan9bb |  |-  ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( P .~ x <-> ( x e. X /\ ( P D x ) e. RR ) ) ) | 
						
							| 6 |  | vex |  |-  x e. _V | 
						
							| 7 | 6 | a1i |  |-  ( D e. ( *Met ` X ) -> x e. _V ) | 
						
							| 8 |  | elecg |  |-  ( ( x e. _V /\ P e. X ) -> ( x e. [ P ] .~ <-> P .~ x ) ) | 
						
							| 9 | 7 8 | sylan |  |-  ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( x e. [ P ] .~ <-> P .~ x ) ) | 
						
							| 10 |  | xblpnf |  |-  ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( x e. ( P ( ball ` D ) +oo ) <-> ( x e. X /\ ( P D x ) e. RR ) ) ) | 
						
							| 11 | 5 9 10 | 3bitr4d |  |-  ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( x e. [ P ] .~ <-> x e. ( P ( ball ` D ) +oo ) ) ) | 
						
							| 12 | 11 | eqrdv |  |-  ( ( D e. ( *Met ` X ) /\ P e. X ) -> [ P ] .~ = ( P ( ball ` D ) +oo ) ) |