| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xmeter.1 |  |-  .~ = ( `' D " RR ) | 
						
							| 2 |  | xmetf |  |-  ( D e. ( *Met ` X ) -> D : ( X X. X ) --> RR* ) | 
						
							| 3 |  | ffn |  |-  ( D : ( X X. X ) --> RR* -> D Fn ( X X. X ) ) | 
						
							| 4 |  | elpreima |  |-  ( D Fn ( X X. X ) -> ( <. A , B >. e. ( `' D " RR ) <-> ( <. A , B >. e. ( X X. X ) /\ ( D ` <. A , B >. ) e. RR ) ) ) | 
						
							| 5 | 2 3 4 | 3syl |  |-  ( D e. ( *Met ` X ) -> ( <. A , B >. e. ( `' D " RR ) <-> ( <. A , B >. e. ( X X. X ) /\ ( D ` <. A , B >. ) e. RR ) ) ) | 
						
							| 6 | 1 | breqi |  |-  ( A .~ B <-> A ( `' D " RR ) B ) | 
						
							| 7 |  | df-br |  |-  ( A ( `' D " RR ) B <-> <. A , B >. e. ( `' D " RR ) ) | 
						
							| 8 | 6 7 | bitri |  |-  ( A .~ B <-> <. A , B >. e. ( `' D " RR ) ) | 
						
							| 9 |  | df-3an |  |-  ( ( A e. X /\ B e. X /\ ( A D B ) e. RR ) <-> ( ( A e. X /\ B e. X ) /\ ( A D B ) e. RR ) ) | 
						
							| 10 |  | opelxp |  |-  ( <. A , B >. e. ( X X. X ) <-> ( A e. X /\ B e. X ) ) | 
						
							| 11 | 10 | bicomi |  |-  ( ( A e. X /\ B e. X ) <-> <. A , B >. e. ( X X. X ) ) | 
						
							| 12 |  | df-ov |  |-  ( A D B ) = ( D ` <. A , B >. ) | 
						
							| 13 | 12 | eleq1i |  |-  ( ( A D B ) e. RR <-> ( D ` <. A , B >. ) e. RR ) | 
						
							| 14 | 11 13 | anbi12i |  |-  ( ( ( A e. X /\ B e. X ) /\ ( A D B ) e. RR ) <-> ( <. A , B >. e. ( X X. X ) /\ ( D ` <. A , B >. ) e. RR ) ) | 
						
							| 15 | 9 14 | bitri |  |-  ( ( A e. X /\ B e. X /\ ( A D B ) e. RR ) <-> ( <. A , B >. e. ( X X. X ) /\ ( D ` <. A , B >. ) e. RR ) ) | 
						
							| 16 | 5 8 15 | 3bitr4g |  |-  ( D e. ( *Met ` X ) -> ( A .~ B <-> ( A e. X /\ B e. X /\ ( A D B ) e. RR ) ) ) |