Step |
Hyp |
Ref |
Expression |
1 |
|
xmeter.1 |
|- .~ = ( `' D " RR ) |
2 |
|
xmetf |
|- ( D e. ( *Met ` X ) -> D : ( X X. X ) --> RR* ) |
3 |
|
ffn |
|- ( D : ( X X. X ) --> RR* -> D Fn ( X X. X ) ) |
4 |
|
elpreima |
|- ( D Fn ( X X. X ) -> ( <. A , B >. e. ( `' D " RR ) <-> ( <. A , B >. e. ( X X. X ) /\ ( D ` <. A , B >. ) e. RR ) ) ) |
5 |
2 3 4
|
3syl |
|- ( D e. ( *Met ` X ) -> ( <. A , B >. e. ( `' D " RR ) <-> ( <. A , B >. e. ( X X. X ) /\ ( D ` <. A , B >. ) e. RR ) ) ) |
6 |
1
|
breqi |
|- ( A .~ B <-> A ( `' D " RR ) B ) |
7 |
|
df-br |
|- ( A ( `' D " RR ) B <-> <. A , B >. e. ( `' D " RR ) ) |
8 |
6 7
|
bitri |
|- ( A .~ B <-> <. A , B >. e. ( `' D " RR ) ) |
9 |
|
df-3an |
|- ( ( A e. X /\ B e. X /\ ( A D B ) e. RR ) <-> ( ( A e. X /\ B e. X ) /\ ( A D B ) e. RR ) ) |
10 |
|
opelxp |
|- ( <. A , B >. e. ( X X. X ) <-> ( A e. X /\ B e. X ) ) |
11 |
10
|
bicomi |
|- ( ( A e. X /\ B e. X ) <-> <. A , B >. e. ( X X. X ) ) |
12 |
|
df-ov |
|- ( A D B ) = ( D ` <. A , B >. ) |
13 |
12
|
eleq1i |
|- ( ( A D B ) e. RR <-> ( D ` <. A , B >. ) e. RR ) |
14 |
11 13
|
anbi12i |
|- ( ( ( A e. X /\ B e. X ) /\ ( A D B ) e. RR ) <-> ( <. A , B >. e. ( X X. X ) /\ ( D ` <. A , B >. ) e. RR ) ) |
15 |
9 14
|
bitri |
|- ( ( A e. X /\ B e. X /\ ( A D B ) e. RR ) <-> ( <. A , B >. e. ( X X. X ) /\ ( D ` <. A , B >. ) e. RR ) ) |
16 |
5 8 15
|
3bitr4g |
|- ( D e. ( *Met ` X ) -> ( A .~ B <-> ( A e. X /\ B e. X /\ ( A D B ) e. RR ) ) ) |