Step |
Hyp |
Ref |
Expression |
1 |
|
xmetresbl.1 |
|- B = ( P ( ball ` D ) R ) |
2 |
|
simp1 |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> D e. ( *Met ` X ) ) |
3 |
|
blssm |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ X ) |
4 |
1 3
|
eqsstrid |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> B C_ X ) |
5 |
|
xmetres2 |
|- ( ( D e. ( *Met ` X ) /\ B C_ X ) -> ( D |` ( B X. B ) ) e. ( *Met ` B ) ) |
6 |
2 4 5
|
syl2anc |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( D |` ( B X. B ) ) e. ( *Met ` B ) ) |
7 |
|
xmetf |
|- ( D e. ( *Met ` X ) -> D : ( X X. X ) --> RR* ) |
8 |
2 7
|
syl |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> D : ( X X. X ) --> RR* ) |
9 |
|
xpss12 |
|- ( ( B C_ X /\ B C_ X ) -> ( B X. B ) C_ ( X X. X ) ) |
10 |
4 4 9
|
syl2anc |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( B X. B ) C_ ( X X. X ) ) |
11 |
8 10
|
fssresd |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( D |` ( B X. B ) ) : ( B X. B ) --> RR* ) |
12 |
11
|
ffnd |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( D |` ( B X. B ) ) Fn ( B X. B ) ) |
13 |
|
ovres |
|- ( ( x e. B /\ y e. B ) -> ( x ( D |` ( B X. B ) ) y ) = ( x D y ) ) |
14 |
13
|
adantl |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> ( x ( D |` ( B X. B ) ) y ) = ( x D y ) ) |
15 |
|
simpl1 |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> D e. ( *Met ` X ) ) |
16 |
|
eqid |
|- ( `' D " RR ) = ( `' D " RR ) |
17 |
16
|
xmeter |
|- ( D e. ( *Met ` X ) -> ( `' D " RR ) Er X ) |
18 |
15 17
|
syl |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> ( `' D " RR ) Er X ) |
19 |
16
|
blssec |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ [ P ] ( `' D " RR ) ) |
20 |
1 19
|
eqsstrid |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> B C_ [ P ] ( `' D " RR ) ) |
21 |
20
|
sselda |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ x e. B ) -> x e. [ P ] ( `' D " RR ) ) |
22 |
21
|
adantrr |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> x e. [ P ] ( `' D " RR ) ) |
23 |
|
simpl2 |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> P e. X ) |
24 |
|
elecg |
|- ( ( x e. [ P ] ( `' D " RR ) /\ P e. X ) -> ( x e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) x ) ) |
25 |
22 23 24
|
syl2anc |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> ( x e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) x ) ) |
26 |
22 25
|
mpbid |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> P ( `' D " RR ) x ) |
27 |
20
|
sselda |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ y e. B ) -> y e. [ P ] ( `' D " RR ) ) |
28 |
27
|
adantrl |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> y e. [ P ] ( `' D " RR ) ) |
29 |
|
elecg |
|- ( ( y e. [ P ] ( `' D " RR ) /\ P e. X ) -> ( y e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) y ) ) |
30 |
28 23 29
|
syl2anc |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> ( y e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) y ) ) |
31 |
28 30
|
mpbid |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> P ( `' D " RR ) y ) |
32 |
18 26 31
|
ertr3d |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> x ( `' D " RR ) y ) |
33 |
16
|
xmeterval |
|- ( D e. ( *Met ` X ) -> ( x ( `' D " RR ) y <-> ( x e. X /\ y e. X /\ ( x D y ) e. RR ) ) ) |
34 |
15 33
|
syl |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> ( x ( `' D " RR ) y <-> ( x e. X /\ y e. X /\ ( x D y ) e. RR ) ) ) |
35 |
32 34
|
mpbid |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> ( x e. X /\ y e. X /\ ( x D y ) e. RR ) ) |
36 |
35
|
simp3d |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> ( x D y ) e. RR ) |
37 |
14 36
|
eqeltrd |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> ( x ( D |` ( B X. B ) ) y ) e. RR ) |
38 |
37
|
ralrimivva |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> A. x e. B A. y e. B ( x ( D |` ( B X. B ) ) y ) e. RR ) |
39 |
|
ffnov |
|- ( ( D |` ( B X. B ) ) : ( B X. B ) --> RR <-> ( ( D |` ( B X. B ) ) Fn ( B X. B ) /\ A. x e. B A. y e. B ( x ( D |` ( B X. B ) ) y ) e. RR ) ) |
40 |
12 38 39
|
sylanbrc |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( D |` ( B X. B ) ) : ( B X. B ) --> RR ) |
41 |
|
ismet2 |
|- ( ( D |` ( B X. B ) ) e. ( Met ` B ) <-> ( ( D |` ( B X. B ) ) e. ( *Met ` B ) /\ ( D |` ( B X. B ) ) : ( B X. B ) --> RR ) ) |
42 |
6 40 41
|
sylanbrc |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( D |` ( B X. B ) ) e. ( Met ` B ) ) |