Description: The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isms.j | |- J = ( TopOpen ` K ) |
|
| isms.x | |- X = ( Base ` K ) |
||
| isms.d | |- D = ( ( dist ` K ) |` ( X X. X ) ) |
||
| Assertion | xmstopn | |- ( K e. *MetSp -> J = ( MetOpen ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isms.j | |- J = ( TopOpen ` K ) |
|
| 2 | isms.x | |- X = ( Base ` K ) |
|
| 3 | isms.d | |- D = ( ( dist ` K ) |` ( X X. X ) ) |
|
| 4 | 1 2 3 | isxms | |- ( K e. *MetSp <-> ( K e. TopSp /\ J = ( MetOpen ` D ) ) ) |
| 5 | 4 | simprbi | |- ( K e. *MetSp -> J = ( MetOpen ` D ) ) |