Description: The distance function, suitably truncated, is an extended metric on X . (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | msf.x | |- X = ( Base ` M ) |
|
| msf.d | |- D = ( ( dist ` M ) |` ( X X. X ) ) |
||
| Assertion | xmsxmet | |- ( M e. *MetSp -> D e. ( *Met ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msf.x | |- X = ( Base ` M ) |
|
| 2 | msf.d | |- D = ( ( dist ` M ) |` ( X X. X ) ) |
|
| 3 | eqid | |- ( TopOpen ` M ) = ( TopOpen ` M ) |
|
| 4 | 3 1 2 | isxms2 | |- ( M e. *MetSp <-> ( D e. ( *Met ` X ) /\ ( TopOpen ` M ) = ( MetOpen ` D ) ) ) |
| 5 | 4 | simplbi | |- ( M e. *MetSp -> D e. ( *Met ` X ) ) |