Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
|- 0 e. RR* |
2 |
|
xmulval |
|- ( ( A e. RR* /\ 0 e. RR* ) -> ( A *e 0 ) = if ( ( A = 0 \/ 0 = 0 ) , 0 , if ( ( ( ( 0 < 0 /\ A = +oo ) \/ ( 0 < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ 0 = +oo ) \/ ( A < 0 /\ 0 = -oo ) ) ) , +oo , if ( ( ( ( 0 < 0 /\ A = -oo ) \/ ( 0 < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ 0 = -oo ) \/ ( A < 0 /\ 0 = +oo ) ) ) , -oo , ( A x. 0 ) ) ) ) ) |
3 |
1 2
|
mpan2 |
|- ( A e. RR* -> ( A *e 0 ) = if ( ( A = 0 \/ 0 = 0 ) , 0 , if ( ( ( ( 0 < 0 /\ A = +oo ) \/ ( 0 < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ 0 = +oo ) \/ ( A < 0 /\ 0 = -oo ) ) ) , +oo , if ( ( ( ( 0 < 0 /\ A = -oo ) \/ ( 0 < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ 0 = -oo ) \/ ( A < 0 /\ 0 = +oo ) ) ) , -oo , ( A x. 0 ) ) ) ) ) |
4 |
|
eqid |
|- 0 = 0 |
5 |
4
|
olci |
|- ( A = 0 \/ 0 = 0 ) |
6 |
5
|
iftruei |
|- if ( ( A = 0 \/ 0 = 0 ) , 0 , if ( ( ( ( 0 < 0 /\ A = +oo ) \/ ( 0 < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ 0 = +oo ) \/ ( A < 0 /\ 0 = -oo ) ) ) , +oo , if ( ( ( ( 0 < 0 /\ A = -oo ) \/ ( 0 < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ 0 = -oo ) \/ ( A < 0 /\ 0 = +oo ) ) ) , -oo , ( A x. 0 ) ) ) ) = 0 |
7 |
3 6
|
eqtrdi |
|- ( A e. RR* -> ( A *e 0 ) = 0 ) |